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1.0  SUMMARY 
 

The tracking of Earth orbiting objects has been a topic of growing concern, due to the fact 
that the amount of man-made orbital debris, and the number of active and inactive space objects 
have been steadily increasing over the past several decades. Space Situational Awareness (SSA) 
is concerned with the tracking, detection, and cataloging of numerous space objects using 
relatively few ground-and space-based sensors known as the Space Surveillance Network (SSN). 
While these sensors provide observations of object characteristics (range, azimuth, elevation, 
etc.) the large number of objects compared to the limited sensors available to track them results 
in measurements occurring infrequently. These potentially long periods of either inability to 
make observations (due to line-of-sight access) or unavailability of sensors (due to scheduling 
constraints) necessitates the need to intelligently determine which objects should be observed 
and which should be ignored at various times, a process known as sensor tasking or sensor 
network management. 

In order to make these tasking decisions, it is necessary to create some form of utility metric 
to determine which sensors should observe which objects at a particular instant of time. This 
report examines the use of utility metrics from two forms of expected information gain for each 
object-sensor pair as well as the approximated stability of the estimation errors in order to work 
towards a tasking strategy. The information theoretic approaches use the calculation of Fisher 
information gain (FIG), an estimate of the upper bound of information present in an unbiased 
estimator, and Shannon information gain (SIG), a measure of information gained about the 
particular state. Both of these methods are considered myopic or greedy in nature, due to the fact 
that they calculate only information gained over one simulation time step. FIG has been studied 
previously as a potential sensor tasking metric, and has even been investigated in applications to 
SSA, while SIG has been suggested as a possible sensor tasking metric, but has yet to be 
investigated when applied to sensor tasking in the SSA problem. The stability approach reflects a 
new type of metric referred to in these studies as largest Lyapunov exponent estimation (LLE), 
and has yet to be studied as a sensor tasking utility metric. 

The process of evaluating these utility metrics is intrinsically tied in with state and 
uncertainty estimates provided by a nonlinear filter. That is, each utility metric requires estimates 
provided by the filters in order to be calculated, creating a coupling effect between the estimation 
and tasking components of the satellite tracking problem. In order to investigate this, three 
candidate nonlinear estimators, an extended Kalman filter (EKF), an unscented Kalman filter 
(UKF) and a recently introduced adaptive entropy-based Gaussian-mixture information synthesis 
(AEGIS) filter are tested. The primary difference in these filters is their ability to approximate 
system nonlinearities in their application, with previous work showing that the AEGIS filter 
performs the best in this regard, while the EKF performs the worst. While many studies have 
shown how an EKF and UKF differ in estimation performance when applied to orbit 
determination problems, little work has been done to investigate the AEGIS filter in these 
regards. 
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While much recent research has been conducted investigating specific methods of either 
sensor tasking or nonlinear estimation, there are yet to be any studies which investigate the 
coupling of the two, as it is related to overall tracking performance. The investigation of this 
coupling demonstrates that the use of more accurate filters leads to better overall estimates, not 
only due to the advantages within the estimation methods, but also from the improvement in 
tasking decisions due to selection of these estimators.  
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2.0 INTRODUCTION 

2.1  Motivation 
 

Beginning with the inception of the space program, the ability to accurately monitor man-
made resident space objects has become of paramount importance to the continuation and safety 
of our near-Earth space operations. This process of detection, tracking, and cataloging space 
objects is known as Space Situational Awareness (SSA). Since the beginning of the space 
program, the U.S. Air Force Space Command has been charged with the tracking of various 
active satellites, deactivated satellites, and space debris for the purposes of cataloging and 
conjunction analysis. With decades of man-made objects being placed into various Earth orbits, 
the tracking of these objects becomes ever more difficult, with the probability for inaccurate 
object position estimates, improper object identification, and even object collisions increasing as 
each new object is introduced to the space environment. Current estimates of the number of 
objects needed to be tracked are around twenty thousand, while the U.S. resources available to 
track them stand at about twenty globally positioned optical and phased array sensors known as 
the Space Surveillance Network (SSN). 

For scenarios such as this in which there exists a disproportionate ratio between objects 
tracked and sensors available to observe them, a problem may arise in which a particular sensor 
may have multiple objects visible to it, but constraints prohibit it from observing all of those 
objects within the window where they are visible. Additionally, problems may also arise in cases 
where large gaps exist between opportunities to make observations. This situation is often the 
case for satellite tracking problems, where ground-based sensors have limited fields of view and 
where the Earth ‘s rotation and object dynamics can yield long periods before an observable pass 
will occur between an object and a particular sensor. These gaps in observations, mis-modeling 
of the orbital dynamics, sensor noise, and numerical errors may lead to potential divergence in 
the position estimation and uncertainty associated with that object. This could pose several 
tracking issues, including poor predictive capability, inability to associate measurement data with 
appropriate estimates (poor data association), and unrealistic or physically impossible estimate 
behavior. 

In this situation, the need arises to make an intelligent decision of which object to observe 
and which to ignore, a process henceforth referred to as sensor tasking, or sensor network 
management. This decision making process could have significant consequences, particularly if 
it results in not observing objects which are infrequently available to the sensors. Therefore, 
methods must be introduced which allow for sensors to make these difficult tasking decisions. 
These methods will generally revolve around calculating a utility metric which prioritizes objects 
for observation, and allocates sensor resources to best observe those priorities. In many cases, 
this priority will revolve around observing objects to maintain the most accurate state and 
uncertainty estimates for all objects being tracked, and typically rely on object state/uncertainty 
estimates, or other properties (object dynamics models, sensor models, etc.) in their calculation. 
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This implies that the methods of state/uncertainty estimation can play a vital role in the 
formation of such a utility metric. For the nonlinear dynamics present in space object state 
propagation, and the possible application of nonlinear measurements based on these state values, 
a nonlinear filter must be applied in order to obtain the state/uncertainty estimates necessary to 
not only monitor these objects, but also calculate potential tasking utility metrics. Nonlinear 
filtering and estimation techniques have been thoroughly researched in the field of satellite orbit 
determination, with particular applications to tracking resident space objects.   

In the tracking process, these filters provide a probability density function (PDF) describing 
an object’s state and uncertainty by calculating an estimated mean and covariance. Sensors 
(optical telescopes, radar, patched arrays, interferometers, and transponders) can provide 
measurements of a particular object’s position at various times, which can be used within a 
nonlinear filter to update these estimates to more accurately reflect its location and uncertainty. 
However, different methodologies exist concerning both the updating of state and uncertainty 
estimates, as well as propagating them forward in the time span between updates. Previous work 
has shown in general that estimators which can better handle system nonlinearities result in 
better estimates than filters that rely on approximations or poor models of system nonlinearities. 

Therefore, success in monitoring these objects relies not only on selecting an appropriate 
tasking method, but also on selecting the best possible nonlinear estimator. Furthermore, since 
tasking decisions will depend on metrics calculated from the state and covariance estimates 
provided by the particular estimator used, a coupling effect between tasking and estimation is 
produced. That is, a filter which provides superior estimates may in fact make better tasking 
decisions, resulting in fitter data which further improves its estimates over an inferior method. 
The purpose of this dissertation is to examine how this coupling can amplify performance 
differences between estimator types beyond those that are seen if the estimators are given 
identical data sets. 

To study this coupling, various methods of estimation and sensor tasking are applied to a 
simplified simulation of the estimation and tasking components of the SSA tracking problem. In 
general terms, SSA encompasses a broad range of topics from detecting new space objects, 
characterizing and identifying existing objects, and understanding of the space environment, 
while incorporating methods in optical-based satellite detection, nonlinear estimation, sensor 
tasking, and data association. While this problem includes a broad and interconnected array of 
engineering topics, the scale of the problem is reduced by investigating the specific components 
of estimation and tasking, and assuming the data association, noise estimation, and additional 
components to be modeled as given quantities instead of deterministically. 

2.2  Review of Previous Literature 
 

The process of monitoring resident space objects has been thoroughly researched, mainly 
concerning methods of orbit determination (estimation) and sensor resource allocation (sensor 
tasking). Details of current tasking methods for the SSA problem using the SSN are given in the 
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work of Miller [3], while specific characteristics of the primary optical and Ground Based Radar 
(GBR) sensors comprising the SSN can be found in the work of Vallado and Griesbach. [4]. 

2.2.1  Sensor Tasking and SSA 
 

Current tasking methods of this problem revolve around observation based on priority (such 
as atmospheric reentry, elapsed time since last observation, military interest, etc.) and do not 
incorporate motivations such as uncertainty/chaos reduction presented in these studies. These 
tasking methods separate the near-Earth orbit regimes of space objects into energy dissipation 
bins, and provide a suggested amount of observations (or tracks) per day. The motivation for this 
form of tasking came from a previous method of binning objects into Gabbard classes based on 
perigee and apogee height of the object’s respective orbits [3]. This simple form of sensor 
allocation was later replaced by the current method based on a study conducted by Lockheed 
Martin [5] which found a more effective binning method than the previously used Gabbard 
classes. This new method divided objects in the satellite catalog into 11 energy dissipation rate 
bins (each with their own suggested tracks per day) based on the amount of atmospheric drag a 
particular satellite experiences. 

While this current method of tasking has shown to work, recent publications have suggested 
using more advanced methods in sensor tasking in order to create more optimal tasking solutions 
to the SSA problem. Some of these methods include tasking sensors to observe the most possible 
objects in some frame of time [6], or incorporating game theoretic approaches involving 
intelligent tracking responses based on the characteristics of objects being detected/tracked [7] 
and sensors tracking them [8]. These methods require some key assumptions about the types of 
objects being tracked (such as assuming they are all in low-Earth orbit [6]), and generally 
revolve around the awareness concept of the SSA problem, in which determining what specific 
objects are doing is more important than tracking as many objects as possible. For this reason, 
these studies will look to other methods of sensor tasking that are based more on overcoming the 
difficulties in observing many objects using few sensor resources. Due to this, the tasking 
methods selected for these studies should be driven by the motivation to maintain the lowest 
uncertainty (or highest information) among all objects tracked. 

Fortunately, this type of approach has been thoroughly studied for general applications to 
sensor network management problems, which could be easily applied to the SSA problem. These 
tasking strategies gained tremendous popularity in the 1990’s, especially with the work of 
Schmaedeke [9], which proposed a method of sensor tasking that would maximize information 
gained by each sensor. This measure of information was referred to as the relative information 
gain, which measured the difference in information of a Gaussian posterior about a Gaussian 
prior distribution utilizing covariance matrices. This relative information gain was in fact the 
same as the Shannon information, which reflects information gained about the state (in this case, 
the prior covariance) [10]. This form of information can be easily computed in conjunction with 
a Kalman filter algorithm (to gain the necessary Gaussian covariance estimates), whose 
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application to sensor tasking problems has been illustrated in several recent works [11, 12, 13]. 
Additionally, others such as Tian et al. [14] have suggested using similar information-

theoretic approaches utilizing Fisher information. Unlike the relative measure of Shannon 
information, Fisher information, which represents the upper bound on information present in an 
unbiased estimator [15], is an absolute measure of information. Like Shannon information, this 
metric can be easily calculated given a prior and posterior covariance estimate provided by a 
sequential Kalman filter algorithm [16, 17]. In both the cased of using Shannon information or 
Fisher information, the information-theoretic metric is calculated for each possible object-sensor 
pair, to which methods of linear programming are used to allocate which sensors will observe 
which objects [9, 14]. This application makes these methods myopic, or greedy in nature, due to 
the fact that they only account for information gained over one particular instance in time, and do 
not predict for consequences such as limited object access, or the tendency of uncertainty to 
diverge should observations occur infrequently. 

However, should tasking decisions be based upon projecting the possible information gained 
over some finite look ahead time, a problem arises in computational costs associated with 
solving a potentially large scale dynamic programming problem. In fact, Hero et al. [18] wrote 
an entire book focusing on these types of sensor network management problems, suggesting 
information metrics (such as Fisher information) as cost functions to drive dynamic 
programming solutions to the Markov Decision Process of sensor resource allocation. Methods 
such as receding horizon control [19] attempt to reduce the complexity of solving these problems 
by taking the fact that covariance estimates can be generated without the use of measurement 
data to create a partially observable Markov decision process that is less complicated to solve. 
Additionally, others have suggested using genetic algorithms to solve the large-scale 
optimization problems present in multi-object, multi-sensor allocation problems [20]. However, 
these studies have focused on problems that do not contain the computational complexity of the 
SSA problem, or require computational costs that would not be appropriate for the purposes of 
these studies. 

Recently, Erwin et al. [21] applied the use of Fisher information as a utility metric 
specifically to the SSA problem. In this approach, a myopic form of sensor tasking was 
implemented, which enabled tasking and allocation algorithms inside a small-scale SSA 
simulation at relatively low computational costs. This study showed the benefits of an 
application of Fisher information directly to the SSA problem, and how the sensor allocation 
process could be easily achieved with the conjunction of an extended Kalman filter to provide 
state and covariance estimates.  

However, these studies (nor the ones previously mentioned) do not address how the quality 
of the estimates generated using the Kalman filter algorithm could affect the sensor tasking 
decisions, and furthermore overall performance of the sensor networks ability to effectively track 
all of the objects. Therefore, to better study solutions to the SSA problem, the method of 
estimation, and not only the tasking strategy must be investigated. 
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2.2.2  Estimation and Orbit Determination 
 

Since the 1960’s, many estimation methods have been created based on a recursive algorithm 
providing estimates of state and covariance in the presence of noise in both state dynamics and 
measurement data, known as the Kalman filter. Originating with a preliminary paper by Kalman 
[22], this algorithm used a multi-step method of filtering in which estimates were linearly 
propagated forward in time in a forecast step, and then refined within an update step upon 
receiving measurement data. These steps can be repeated an in finite number of times, allowing 
for state and uncertainty estimation to occur in real-time so long as measurement data continues 
to be collected. 

Adaptations and advancements were eventually made to this preliminary sequential Kalman 
filter algorithm, including the ability to filter in the presence of nonlinear dynamics and 
measurement models known as the extended Kalman filter (EKF). This method proved 
beneficial for purposes of orbit determination (given the nonlinear dynamics of satellite motion) 
and was first implemented in the Apollo Moon landings [23]. Eventually, the EKF would be 
widely used within other non-linear filtering problems, including modern aerospace applications 
in robotics and navigation, such as autonomous flight [24]. The EKF differed from the original 
linear Kalman filter by propagating uncertainty linearly using a state transition matrix, 
propagating the state estimate through the full nonlinear dynamics, and approximating nonlinear 
predicted measurement uncertainty using a first order Taylor series approximation about the 
current state estimate [25]. This approach is effective so long as the propagation time in the 
forecast step is short enough so that second order or higher errors from the linearization are 
small. 

Nearly forty years after the inception of the EKF, a new adaptation of the Kalman filter 
algorithm known as the unscented Kalman filter (UKF) claimed to better approximate system 
nonlinearities, and therefore yield better estimates than the EKF for nonlinear systems [26]. The 
UKF does this by using a small distribution of sigma points that are propagated directly through 
the nonlinear equations of motion, which provide state and uncertainty estimates in the forecast 
step, and measurement approximations in the update step using statistical analysis. The result is 
that the state and uncertainty estimates calculated using these methods do not necessitate linear 
approximations of system nonlinearities, and could therefore achieve second order or higher 
accuracy [27]. 

Typically, when presented with a consistent time interval of measurements, the UKF has 
produced better estimates than the EKF for nonlinear systems ranging from simple pendulums 
[28] to more complex problems in orbit determination [28, 29] and autonomous flight [30]. 
Depending on the extent of the nonlinearity in the system dynamics or measurement models, 
linearization errors resulting from the EKF could be amplified, leading in to a quicker divergence 
in state estimate error when using an EKF opposed to a UKF. These errors may play an essential 
role in the performance discrepancies seen when comparing the two filters [30]. Moreover, it has 
also been shown that, for the case of orbit determination, the EKF has trouble producing accurate 
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estimates as time between measurements increases [28], reinforcing the conjecture that as 
propagation time in the forecast step increases, linearization errors grow and result in poor 
estimation for the EKF. 

In an attempt to try to better propagate and model uncertainty in nonlinear filtering problems, 
an additional class of nonlinear filters were derived which utilized a Gaussian mixture model 
(GMM) approach to the Bayesian estimation problem [31]. In this approach, an initial Gaussian 
probability density function (PDF) described by a mean and covariance can be split into multiple 
Gaussian PDFs to be propagated and updated in parallel. The goal of the GMM is to better 
describe the actual non-Gaussian PDF resulting from propagation of the initial PDF through a 
nonlinear transformation than could be possible using a single Gaussian PDF (such as the case 
using an EKF, and possibly a UKF). The GMM filter was eventually adapted to be applied 
within an EKF [32] and later a UKF, and has been tested within orbit determination problems to 
show better results of uncertainty estimates when compared to a standard UKF [33]. The GMM 
approach to filtering has also been advanced further by Terejanu et al. [34] who presented a 
method of updating weights to GMM components, further improving the non-Gaussian PDF 
modeling made possible using a GMM. 

One of the most recent additions to the GMM approach has come in the application of an 
adaptive entropy-based Gaussian-mixture information synthesis (AEGIS) filter, which has been 
shown to outperform the UKF in the propagation of uncertainty in orbit determination problems 
[35, 36]. The AEGIS filter adapts the GMM to incorporate a splitting algorithm within the UKF 
propagation of uncertainty, so that when a degree of nonlinearity is detected a single Gaussian 
PDF can be split into a GMM of several Gaussian PDFs. This GMM more accurately reflects the 
actual PDF in the presence of these nonlinearities, implying state and uncertainty estimates are 
more accurate as well. 

The central hypothesis of the work presented here is that the improved estimates provided by 
a UKF over an EKF, and furthermore an AEGIS filter over a UKF will not only help the orbit 
determination component of a satellite tracking problem, but also provide better tasking 
decisions and sensor schedules given these improvements. 

2.3  Research Contributions 
 

The focus of this work is to examine the effect that nonlinear estimation has on sensor 
tasking, tested specifically within the estimation and tasking components of a satellite tracking 
problem. This research models the estimation and tasking components of SSA, reflecting general 
tasking/estimation coupling trends observable in a wide variety of nonlinear tracking problems. 
In general terms, SSA encompasses a broad range of topics from detecting new space objects, 
characterizing and identifying existing objects, and understanding of the space environment, 
while also incorporating methods in optical-based satellite detection, nonlinear estimation, sensor 
tasking, and data association. While this problem includes a broad and interconnected array of 
engineering topics, the scale of the problem can be reduced by investigating the specific 
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relationship between estimation and tasking, and assuming the data association (i.e. 
understanding which object is being observed), noise estimation, and additional components are 
known a priori. 

While many publications have compared methods of nonlinear estimation for orbit 
determination problems, and others have suggested methods for sensor network management, 
none have studied the coupling of the two. That is, a filter which provides superior estimates may 
in fact make better tasking decisions, resulting in superior data which further improves its 
estimates over an inferior method. Therefore, the primary purpose (and largest contribution of 
original thought) of this dissertation is to examine how this coupling can amplify performance 
differences between estimator types beyond those that are seen if the estimators are given 
identical data sets. 

In order to accomplish this, this work also makes several additional contributions to methods 
of dynamic sensor tasking as well as nonlinear estimation. For nonlinear estimation, while much 
previous research has compared performance of the EKF and UKF applied to nonlinear tracking 
problems, very little exists in examining the AEGIS filter. Recent work has shown that the 
AEGIS filter outperforms a UKF (and is therefore assumed it would outperform an EKF) [35, 
36], but no work has been done that integrated the AEGIS filter into a sensor allocation 
algorithm and compares its performance to an EKF and UKF under those conditions. Since the 
satellite tracking simulation in this work will include large time spans of propagating estimates in 
the absence of measurement data, it will further investigate the improvement in uncertainty 
propagation and updating gained using the AEGIS filter as opposed to an EKF or UKF.  

In regards to sensor tasking, two myopic information-based metrics utilizing Fisher 
information gain (FIG) [14] and Shannon information gain (SIG) [11] will be investigated. These 
particular information measures were chosen due the legacy of their applications in sensor 
network management strategies and ease of extraction given state/uncertainty estimates provided 
by nonlinear filters [12, 21]. Additionally, they represent both an absolute and relative measure 
of information gain. While the application and effectiveness of these two methods have been 
studied individually, no current work investigates how these two information-based sensor 
tasking strategies compare to each other. This work will determine whether there are advantages 
to using absolute or relative measures of information, as well as illustrates how they may be 
extracted from a UKF or AEGIS filter, and not just the EKF as previous research showed. 

To accompany the two information-theoretic tasking approaches, a third new type of tasking 
method is studied. This metric is based on maintaining stability of the error dynamics from the 
propagating and updating of estimates conducted within the application of the nonlinear filters. 
The metric in question will be calculated using elements of largest Lyapunov exponent (LLE) 
estimation [37], a tool commonly used to assess state-space stability of dynamic systems and/or 
experimental data, and has not been previously suggested as a possible utility metric for sensor 
tasking problems. The motivation to consider this metric is based on work conducted by Rauf et 
al. [38] which describes how to calculate these stability measures for the error dynamics in filters 
using the root mean square error (which can be extracted from a covariance estimate provided by 
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a filter). It is hypothesized that this metric would create tasking decisions prioritizing objects 
which showed the greatest trends of divergence in their estimated uncertainty. This dissertation 
will therefore be the first work which shows how to extract this stability-based metric within an 
EKF, UKF, or AEGIS filter algorithm, as well as how to use it as a tasking utility metric. 
Furthermore, this will be the first work to compare this new method to the previously studied 
tasking strategies utilizing FIG and SIG. 

2.4  Report Outline 
 

The research presented here is organized in the following manner. In Section 3.1, the two-
body satellite dynamics and nonlinear range-angle measurement data used to create a space 
object tracking model are detailed. This section serves to illustrate how space objects and sensors 
will be populated and propagated within a simplified planar two-body acceleration force model 
(for orbiting objects) using a rotating Earth model (for ground-based sensors). Additionally, it 
describes how a sensor’s field of regard is defined, and how it is used to determine sets of objects 
available for observation and sensors available to observe them at each simulation time step. 

Section 3.2 begins by providing a brief background on probability theory (concentrating on 
Gaussian distributions) and signal filtering, before detailing the linear Kalman filter. Two 
nonlinear extensions of the linear Kalman filter are then detailed (the EKF and UKF), 
highlighting the application of these filters to a multi-object, multi-sensor filtering problem, as 
well as how they differ in methods of approximating nonlinear covariance propagation and 
measurement functions. This is followed by the introduction to GMMs, and how they are applied 
to non-linear filtering by introducing the AEGIS filter. In this section, general GMM properties, 
methods of splitting GMM components, detection of system nonlinearity, merging GMM 
components, and their application within a UKF bases filtering scheme will be discussed. 
Finally, the section ends with detailed recursive algorithms for the EKF, UKF, and AEGIS filters 
with respect to their applications within a nonlinear multi-object tracking problem. 

In Section 3.3, the concept of sensor tasking is illustrated, including times when tasking 
decisions are made, as well as constraints imposed on the tasking process. Three covariance-
based tasking methods will then be discussed, starting with two information-theoretic approaches 
and concluding with a new stability-based approach. Fisher information gain is first discussed, 
which reflects an absolute gain in information, followed by Shannon information, a relative 
measure of information gained about the state of a system. A new method is then illustrated that 
determines the error-stability for a particular object in the form of estimating a largest Lyapunov 
exponent. In each case, details for calculating these metrics within an EKF, UKF, and AEGIS 
filter are presented. 

Section 4.1 discusses how performance of the estimation/tasking combinations is evaluated 
after completion of a simulation, with simulation set-up, results and analysis presented in Section 
4.2. Results are based on identical simulations for two test cases. The simulations incorporate 
each of the three tasking methods applied to each of the three nonlinear filters, with an additional 
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ideal simulation conducted for each of the three filters using no tasking (i.e. all sensors collect 
data for all objects within their field of regard at all simulation time steps). These simulations are 
conducted for two test cases of low initial error (ideal for most practical satellite tracking 
applications) and a high initial error case (highlighting performance in non-ideal conditions). 

Finally, in Section 5 conclusions are drawn as to the coupling effects of the particular 
methods of tasking and estimation, in which the average estimation error over all satellites will 
be held as the paramount indication of which combination of methods was the most ideally 
suited towards this particular facet of the satellite tracking problem. In addition, performance 
results with respect to each method of tasking and estimation will be discussed, highlighting 
which of these methods would be most ideal to a real-world satellite tracking problem. This 
section concludes with recommendations for future work that can be derived from these studies, 
with applications both to the problem of satellite tracking and general nonlinear tracking 
problems. 
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3.0 METHODS, ASSUMPTIONS AND PROCEDURES 

3.1 Dynamics and Measurement Models 
 

To construct a simulation of the estimation and tasking components of the SSA problem, the 
equations of motion of both space objects tracked and sensors used to track them, as well as 
models of sensors measurement data are defined. These models reflect realistic (though 
simplified) trajectories of orbiting space objects as well as ground and space based sensor 
positions and fields of view throughout the duration of the simulation. All states of objects and 
sensors will be based on an inertial x y coordinate system with the Earth’s center at its origin (i.e. 
the coordinate frame it will stay fixed with respect to a constant rotating Earth model). This 
system was chosen over a more realistic three dimensional system for computational simplicity. 
Since the motivation for these studies is to determine the coupling between estimation and sensor 
tasking within the nonlinear framework of orbital mechanics, the use of a third dimension only 
adds increased computational complexity, and is therefore not necessary to complete the 
objectives of this research. The two-dimensional Earth is also assumed to be described by a 
circle, containing no oblateness such that the force of gravity is considered constant at a certain 
displacement from the origin. A generic illustration of this system populated with space objects 
and various sensors which would be tasked to track them (both space and ground-based) similar 
to this SSA simulation can be seen in Figure 1. 

3.1.1  Object Dynamics 
 

To model object motion and sensor locations, a series of Ns 2-D objects in the set 

 
s1 NO o , ,o   are modeled, such that their distribution is bimodal with the majority of orbits 

being within proximity of a low-Earth orbit (LEO) or a geostationary Earth orbit (GEO). 
Additionally, object eccentricity is determined from a one degree of freedom chi-square 
distribution which places most of the objects in near circular orbits. For these studies, the 
primary assumption in the dynamics of each object tracked is that measurements of their 
location, as well as state/uncertainty updates (resulting from sensor tasking) are only possible at 
discrete time intervals. Therefore, for a particular object, it is assumed that measurements are 

only possible at times kt k t, k 1,2,     where Δt is a constant time step. At these discrete 

times, the motion of an object is also described in state-variable form, to which the n element1 
state vector for the given object i at time k is defined as 

                                                            
1 In this case, the size of the state is n = 4 
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Figure 1.  Illustration of a Simple SSA System Necessitating Sensor Tasking for 6 Orbiting 
Objects Oi (i = 1,…,6) to be Tracked, and Sensors Sj (j = 1,…,4) to Track Them (3 Ground, 1 
Orbiting) 

Assuming that each space object (and orbiting sensor) meets the criteria for a two-body force 
model [39] 

 The mass of the space object is negligible compared to that of the Earth The 
coordinate system for the simulation is inertial  

 The bodies of the satellite and attracting body are spherical, with uniform density  
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 No additional external forces act on the system except gravity, which acts along the line 
joining the centers of the space object and the Earth  

Their corresponding equations of motion are described by 

  
i,k i,k

i.k i.k
i,k i,k i,k i,k

i,k i,k

i,k i,k

x x

y y
x f x w w

x x
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   
   
       
   
   
   



   
 

 

 (2) 

where 2 2
i,k i,k i,kr x y  ,µE is the constant gravitational parameter of Earth, the subscript i refers 

to an index in the set of Ns objects being tracked, and i,kw


 is the object’s process noise vector 

with covariance T
i,k i,k i,kQ w w

 
. For these studies, process noise is taken to be any unmodeled 

disturbance to an object’s known equations of motion, which can take the form of unmodeled 
perturbations or errors which exist in numerical propagations (such as applications of a linear 
state transition matrix, or numerical integration). 

Equation 2 can be propagated forward from time step k to k + 1 using one of two methods. 
First, it can be propagated by direct numerical integration of Equation 2, a transformation 

represented by the function    k 1

k

t

t
F x f x, t dt


 

 
 

  i,k 1 i,kx F x 
 

 (3) 

or it can be propagated as a deterministic system using a state transition matrix, i,k|k 1  

 i,k 1 i,k|k 1 i,kx x  
 

 (4) 

where i,k|k 1  is calculated from numerical integration of the equation 

 
k ki,t |t i,t |t

i,t

f

x

     
   (5) 

from time-step k k k 1  . In this propagation, i,k|k 1  represents the final value of 
ki,t |t  from 

the propagation of Equation (5), with the initial condition, 
k ki,t |t n nI   . Additionally, the 

propagation time t is sometime within the time steps k and k+1. For this particular n = 4 state 
problem, the n n  matrix of partials in Equation 5 is defined as 

 
2
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3.1.2  Sensor Dynamics 
 

A series of Ms sensors given by the set  
s1 MS s , ,s   are modeled, such that they may 

either represent a ground sensor, or an orbiting sensor. The location of the sensors in the 
simulation is assumed to be known with no uncertainty, and can be described by 

 

s
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s
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j,k s
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 (7) 

with equations of motion 
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if the index j corresponds to an orbiting satellite, where the sensor position 

   2 2s s s
j,k j,k j,kr x y   Furthermore, should the index j correspond to a ground the equations of 

motion are given by 

  
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j,k g j,k 2 s
E j,k
2 s
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y
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
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where E  is the constant rotational rate of the Earth. To propagate these sensor equations of 

motion forward in time, the same techniques can be applied as with the case of object equations 
of motion. In this case, should the index j reflect an orbiting sensor, this would yield propagation 
using 

  j,k 1 j j,ks G s 
 

 (10) 

where  k 1

k

t

0t
G g s, t dt


 


, or 

 j,k 1 j,k|k 1 j,ks x  
 

 (11) 

where  
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and 

 

2
j,t E j,t j,t

E 5 3 5
j,t j,t j,tj,t

2
E j,t j,t j,t

E5 5 3
j,t j,t j,t

0 0 1 0

0 0 0 1

3x 3 x y1f 0 0
r r rs

3 x y 3y 1
0 0

r r r







 
 
 
              
 

     
  

  (13) 

However, if the index j represents a ground-based sensor, there exists a closed form solution 
to propagating Equation 9 since it is a linear differential equation with solution [40] 
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where RE is the constant radius of the Earth, and j,0  is the sensors initial angle relative to the 

positive x-axis such that 
s
j,01

j,0
E

x
cos

R
   

  
 

 with quadrant checks applied if s
j,0x  < 0. 

3.1.3  Sensor Model 
 

Observations will be made by a total of Ms sensors, containing ground based and orbiting 
space based sensors. A simple illustration of this system can be seen in Figure 1, while the 

sensors field of regard j  (bounded by a maximum range Δj and half-angle with respect to the 

local vertical2, Γj) can be seen in Figure 2. The sensors field of regard reflects an area in the 
Earth-centered inertial Cartesian x - y coordinate system in which a sensor can gather position 
data on an object. This position will be reflected as one range measurement (in kilometers), and 
one elevation measurement (in radians). 

Measurements  i, j ,ky


 of a satellite i by sensor j are deemed as available measurements if the 

object i is positioned within the field of regard, Γj;k of sensor j at time k, as illustrated in Figure 2. 

                                                            
2 In the case of space-based sensors, the local vertical is assumed to be parallel to the orbiting 

sensors position vector measured from the center of the Earth inertial x - y coordinate system to 
the sensor. 
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The measurement taken by a sensor on an object at a given time is represented by a nonlinear 
measurement function  

  

 
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where    i,k j,k i, j ,kh x , s 
, and    i,k j,k i, j ,kh x , s 

. Additionally, j,kv


is a particular sensors 

measurement noise vector with the measurement noise covariance 
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Figure 2.  Illustration of SSA System Sensor Measurements From Sensor Sj of Object Oi With 
Field of Regard Γj Spanning a Range of Δj and Half-angle Ψj (Represented by Shaded Region). 
In This Figure, the x - y Axis Reflects an Earth-Centered Inertial System 
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Measurement noise, similar to process noise, is viewed as any disturbance related to the 
actual measurement of one or more of an object’s characteristics (such as range), which reflects a 
source of empirical error in the tracking problem. For these studies both the process and 
measurement noise are assumed to be purely additive zero-mean Gaussian noise. Additionally, 
quadrant checks will be necessary to solve Equation (15), should a sensor’s maximum half-angle 

Ψj > 903. 
A measurement of space object i by sensor j is possible if the space object is positioned 

within the field of regard of the sensor at some time step, as illustrated in Figure 2. At each time 
step, a set of indices representing available objects 

  a
k (i, j),k j (i, j),kO i : and , j        (17) 

and sensors available to observe them 

   a
i,k j (i, j),k ji, j ,kS j : and       (18) 

detailing which sensors have the possibility to observe each object at a given measurement time. 
The tasking algorithms used will select the best combination of instantaneously allowed 
observations given by these sets, as described in Section 3.3. This implies that even though an 

object is in the set a
kO , it does not guarantee that it will be tasked for observation. 

It is important to note that when determining these available object-sensor pairs, knowledge 
of which object is being observed is assumed to be known at all times. This is done to maintain 
the focus of these works strictly on the relationship between nonlinear estimation and sensor 
tasking, while excluding all other variables that could alter performance due to the selection of a 
filter/tasking method. This implies that for these particular studies, data association techniques 
would introduce an additional variable affecting the performance of the estimation-tasking pairs 
(should they be filter-driven, such as the methods suggested in the work of Kalandros et al. [11]), 
and therefore are not included in the closed loop estimation and tasking algorithm. However, it 
should be noted that the concept of data association is critical in real-world applications of 
satellite tracking, such as SSA. 

3.2 Nonlinear Estimation 

3.2.1  The Gaussian Distribution 
 

Three candidate nonlinear estimators, an EKF, UKF, and AEGIS filter are implemented in 
these studies. The three estimators use similar Kalman filter-based algorithms, but contain many 
differences in the methods of propagating and updating their estimates. In each estimator, from 

time step iterations k to k + 1, initial optimal state  *
i,kX̂ , and covariance  *

i,kP̂  estimates will be 

                                                            
3 This quadrant check can be achieved using an atan2 calculation method. 
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propagated forward in time to yield forecast state  f
i,k 1X̂   and covariance  f

i,k 1P̂   estimates. 

Should measurement data be available for a particular object, it will then be subject to an update 

of these forecast estimates to yield a new optimal state,  *
i,k 1X̂   and covariance  *

i,k 1P̂   estimate. 

In each of these steps in the three filters implementation, the state (also referred to as the 
mean) and covariance estimates are used to describe a Gaussian PDF of object i at time k in the 
form 

        1 2 T 1
g * * * * * *

i,k i,k i,k i,k i,k i,k i,k i,k i,k

1ˆ ˆ ˆ ˆ ˆ ˆp x ;X , P 2 P exp x X P x X
2


      

 
  

 (19) 

where the covariance *
i,kP̂  is symmetric, positive definite, with diagonal elements representing 

the variance   2n
i,k̂  of the nth state variable. In general the covariance matrix can also be 

described by the standard deviations  n
i,k̂  with respect to each state variable in the form 

(specifically for the state variable described by Equation 1) 
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Using this, the Gaussian uncertainty distribution of each variable is defined by 
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      (21) 

The Gaussian PDF, while meeting the general requirements of all PDFs4 has many unique 
properties which can make it an advantage or a hindrance to describe a PDF of a randomly 
distributed variable. First, a Gaussian distribution (also called a normal distribution) follows very 
closely to many naturally occurring distributions, mainly due to the fact that an overall collection 
of small independent stochastic variables of equal magnitude approaches a Gaussian distribution 
as the number of variables increases [42]. Second, Gaussian distributions are mathematically 

                                                            
4 The PDF is always positive and has a value of one when integrated over its support set [41]. 
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convenient due to the fact that when a linear transformation is applied to a Gaussian distribution, 
the resulting distribution remains Gaussian [43]. This convenience is exploited in the 
implementation of the linear Kalman filter algorithm (described in Section 3.2.2) due to the 
necessity for means and covariances estimated in the Kalman filter to remain Gaussian. 
However, this may pose problems when filtering must be achieved within nonlinear systems, 
since an initially Gaussian distribution propagated through a nonlinear transformation will not 
remain Gaussian. In this scenario, a Gaussian mean and covariance may provide a poor fit to 
describe the new non-Gaussian PDF. 

To illustrate the effects nonlinear transformations have on Gaussian PDFs, the specific 
transformation represented by the integration of an initially Gaussian PDF through satellite orbit 
dynamics (described in Equation 2) is investigated. In this example, a normal distribution of 
particles representing an uncertainty distribution of a space object is created, such that the space 
object is located at the periapsis of the orbit, also functioning as the mean of the distribution 
given by 

  m m m m p px , y , x , y r ,0,0, v      (22) 

where rp is the orbit periapsis radius rp = a(1 - e) = 10,000 km. For this particular example, the 
eccentricity of the orbit e = 0.2 and the velocity at periapsis can be calculated from 

  p E pv 2 1 r 1 2a  . Additionally, the standard deviations for each state variable are 

chosen as 

  x y x y, , , , 10 km,10 km,0.05km / s,0.05km / s      
   (23) 

Therefore, using Equations 21 - 23, an initial normal distribution of space objects is created, 

which is shown in Figure 3. In this figure, the 3 error ellipse about the mean illustrates that 
almost all of the particles comprising this Gaussian distribution are located within this error 
ellipse. This is to be expected since approximately 99.7% of points within a Gaussian 

distribution should lie within its 3 bounds5. 
Once this Gaussian distribution of particles is propagated through the nonlinear orbit 

dynamics in Equation 2, the resulting distribution is shown in Figure 4. After propagation 
through the nonlinear system, a Gaussian PDF no longer provides as good an approximation to 
the uncertainty distribution of the particles as it did for the initial distribution6. Additionally, 
while the initial distribution was roughly elliptical (characteristic of a two-dimensional Gaussian 
PDF), the propagated distribution is now warped to be more banana shaped, a phenomenon 
commonly seen in orbit uncertainty propagation [35]). 
 
 

                                                            5 In this case, these bounds are the error ellipse created by semi major and semi minor axes x 
and y

 
6 A similar effect could be seen using other orbital coordinate systems (e.g. Keplerian, spherical, 
etc.) since each has nonlinear equations of motion. 
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Figure 3.  Illustration of Initial Gaussian Uncertainty Distribution of Space Object and Contour 
Overlay of PDF Evaluation Using Equation 19  

 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.  Illustration of Initial Gaussian Uncertainty Distribution Propagated Through 
Nonlinear Orbit Dynamics 

In this case, a Gaussian PDF would not accurately model the actual PDF of the distribution, as 
can be seen in Figures 5 and 6. In these figures, the actual location of the data points (placed in 
25 equally spaced bins spanning the total dispersion in x and y locations of the data points) 
differs from the prediction of a Gaussian distribution with the same x and y mean and standard 
deviation. This observation is important due to the fact that all nonlinear filters used in these 
studies require Gaussian distributions to describe space object uncertainty models which will 
obviously not be Gaussian. However, the way in which they propagate and define these Gaussian 
distributions differs, leading some estimators to provide approximate Gaussian uncertainty 
models which better suit the actual non-Gaussian uncertainty of the objects as opposed to others. 
This concept will be revisited at later sections when discussing the UKF and AEGIS filter, and 
how they account for these issues. 
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Figure 5.  x-variable PDF of propagated distribution of space objects (binned into 25 equally 
spaced x-position locations) with corresponding Gaussian PDF overlay. 

 
 
 
 
 
 
 
 
Figure 6. y-variable PDF of propagated distribution of space objects (binned into 25 equally 
spaced y-position locations) with corresponding Gaussian PDF overlay. 

3.2.2  Wiener Filtering and the Linear Kalman Filter  
 

Originating from statistical problems concerning communications and control, the process of 
“filtering” data, in which a random signal is separated into relevant data and disturbances (i.e. 
noise), made great advancements in the 1960s, mainly with the introduction of the Linear 
Kalman Filter [22]. The Kalman Filter, unlike its predecessors, was able to create an easily 
applicable and robust algorithm for filtering noisy signals out of linear systems. 

3.2.2.1		The	Wiener	Filter	
 

The roots and motivation for the Kalman Filter stem from previous work done by Wiener 
[44] on the subject of random signal prediction (for these studies, the signal represents a tracked 
objects state vector). For the special case of stationary statistics (a stochastic process whose joint 
probability distribution does not change when passing through time or space), Weiner showed 
how to predict random variables and separate random signals from random noise through the 
Weiner-Hopf integral equation. This equation is based on the concept that a random observed 
signal F(t) is bisected into two distinct parts, the actual signal G(t), and some random noise 

 F(t) G(t) , which along with the application of an impulse filter response, is used to obtain an 

estimate for the actual signal. This governing equation, as well as the Weiner-Hopf convolution 
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integral used to solve this equation can be seen in Equations 24 and 25 respectively. 

  F(t) G(t) F(t) G(t)    (24) 

      
0

t h t d 0    


      (25) 

where the auto correlation of F(t), and the cross correlation of F(t) and G(t) are given by and 
respectively. Equation 25 is used to solve for an operator K( ) which can be used to solve the 
minimum error prediction estimate for G(t+h)(h > 0) when applied to the equation 

      
0

G t h F t d  


     (26) 

Therefore, the actual signal G(t) can be solved for based simply on statistical properties 
(those being auto and cross correlations) of the corrupted signal, and not on knowing the actual 
signal itself. This framework provides the basis for applying a “filter” to a signal, which can be 
viewed generally in graphical format in Figure 7. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. Illustration of a signal (blue), that same signal corrupted by noise (red dashed), and the 
signal estimate which can be gained through signal observations and filtering (green) 

 
However, the solution to the integral in Equation 25 is not trivial, and has some associated 

problems. Two of the issues that make this solution difficult are: 
1) Numerical determination and statistics required to obtain the impulse response is quite 

involved and difficult for computers to handle (at the time Weiner’s paper was published) 
2) Various generalizations to the filtering problem, such as growing-memory filters and non-

stationary prediction can require difficult derivations for each particular case  
3) Mathematics in the derivations of the Wiener-Hopf equation tends to have obscurities in 

the fundamental assumptions of the problem and how they affect the final solution.  
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Due to these shortcomings, Kalman decided to invent his own process for simplifying the 
mathematics in the Wiener-Hopf equation, which would eventually become the Kalman Filter. 
First, Kalman noticed that the Wiener problem requires the use of distributions and expected 
values, for which first and second order averages could be used as approximations to these 
values, making 2) more clear. Next, Kalman used the work of Bode and Shannon [45] to 
represent arbitrary random signals as an output of some linear system which is perturbed by 
some uncorrelated random "white noise". In particular, this method of viewing a signal allowed 
for a solution to the Wiener problem using a state transition matrix. This approach was 
applicable in many generalizations of the filtering problem, solving the complexities of 1). 
Eventually, this would lead to a differential equation for the covariance matrix of the optimal 
estimation error, in a similar way as the Wiener-Hopf equation (which while not explicitly 
presented above, finding a signal error and computing the norm is all that is needed to obtain the 
covariance). This covariance matrix can be calculated at an initial time which an observation is 
made and at each time of subsequent observations so that the coefficients for an optimal linear 
filter can be obtained. 

3.2.2.2		The	Linear	Kalman	Filter	
 

The general framework for the formulation of the linear Kalman filter is that of a stochastic 
system based upon a given signal x1,k and noise x2,k at a given time t k t  . These two quantities 
can be combined to create an observation yk at this time, such that 

 k 1,k 2,ky x x   (27) 

Given an observation, it is necessary to filter out the noise from the actual signal, allowing 
for an estimation of the signal at a given time (the same goal as Equation 26, but accomplished 
now by different means). Once the filtering process is complete, the estimate can be used to aid 
in various real-time performance/information metrics while observations are taking place, as well 
as the creation of a predictive model of the system. It should be noted that in this case x1,k, x2,k 
and yk are considered to be random processes. 

Additionally, the random variable x1,k can be estimated statistically to obtain the signal 

estimate at a given time 1,kX̂ , which will differ from the actual signal value by an estimation 

error 1,k 1,k
ˆx X   . This estimation error can then be implemented in a loss function L() which 

as long as it is always a positive and a non-decreasing function of the estimation error, can be 
used as a cost function in a minimization problem. Thus, an optimal filter should (but is not 

required to) choose an estimation 1,kX̂  which minimizes the expected value of the loss function 

 L     . 

Since the estimation error will be a function of a set of observations 0,k n,ky ,..., y , it follows 

that the solution for the optimal estimate will be a function of these observed variables. 
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Obtaining a general solution to this problem for all practical purposes is impossible, unless one 
of the following is true: 

i) The random processes 1,kx  and 2,kx  are Gaussian  

ii) The optimal estimate can only be a linear function the random observation variables and 

the loss function   2L    

If one of these two conditions are met, it can be shown that given the random observation 

variables 0,k n,ky ,..., y , a vector space kY  can be created where each point or vector in kY  can be 

defined by a linear combination of 0,k n,ky ,..., y  with real coefficients (for example, each vector 

could be defined as such 
k

i ii 0
a y

 ). Through some derivation, it can be shown that the optimal 

signal estimate at some time k+1, which is expressed as *
1,k 1X̂   (that is, the signal estimate which 

minimizes the loss function  L  ) is the orthogonal projection of 1,k 1x   (assumed to be a 

random variable) on the vector space k 1Y  . Thus, the random variable 1,k 1x   can be broken down 

to components orthogonal to the vector space k 1Y  , and components within the vector space 

k 1Y  , the latter representing the orthogonal projection of 1,k 1x   on k 1Y  . This optimal estimate 

represents an output for an open loop impulse filtering process, with the input being the set of 
random observation variables [46],[47]. 

Now that a general solution for an impulse filter is established, it is necessary to then apply 
this solution to a time-varying signal. This process requires both propagating the system 
dynamics through time, and solving for the optimal estimate at each observation. Additionally, 

since the random variable 1,k 1x   is never known, but its estimate at the previous time step is, 1,kX̂  

must be propagated through time Δt so that an approximation can be made for 1,k 1x  , allowing 

one to solve for the orthogonal projection. 
As for the governing dynamics of the system, since the signal represents a random process, it 

can be broken down into a process governed by known dynamics which is excited by an 
independent random process. In this system, it is also assumed that the independent random 
process is Gaussian, which allows for not only the previous derivation of the optimal signal 
estimate, but also is helpful because this random noise will remain Gaussian when passing 
through any linear system. In these studies, this linear system is taken to be the propagation of 
the signal (in the wording of dynamic systems, this signal can also be viewed as the state) from 
one given initial time to some final desired time, by means of implementing a state transition 

matrix, . The state transition matrix represents an n n  matrix (where n is the number of state 
variables) in which each element in the matrix can be determined by solving a first order 
differential equation. Given a linear dynamic system, and linear observation functions expressed 
in the form (with the addition of the subscript object index i as was used previously in Section 
3.1) 
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 i,k
i,k i,k i,k i,k

dx
F x D u

dt
 


 

 (28) 

 i,k i,k i,ky M x
 

 (29) 

where i,kx


 is the n 1  state vector of the system, i,ku


 is an m 1  ( m n ) vector of system 

inputs (which for these studies is similar to the process noise found in Equation 2), and i,ky


 is a 

p 1  vector representing the system outputs. The matrices i,kF , i,kD , and i,kM  can be either 

time-varying or stationary. This method of describing an objects dynamics is the linear version 
of Equations 2 and 15 respectively. The following equation for the propagation of the state can 
be rewritten using the nomenclature for the state transition matrix, and assuming that the input 

i,ku


 is a zero mean Gaussian distribution independent of the state, results in 

 i,k 1 i,k|k 1 i,k i,kx x u   
  

 (30) 

A description of solving for the elements of the state transition matrix i,k|k 1  can be found 

earlier in this section. Using the above linear dynamics and taking the loss function to be the 
trace of the covariance of the optimal estimate 

      T
2 * * *

i,k i,k i,k i,k i,k
ˆ ˆ ˆL tr E x X x X tr P            

 
 (31) 

the goal of the Kalman Filter algorithm then becomes to find the optimal state estimate for the 

next time step *
i,k 1X̂   which will minimize the trace of the covariance matrix of the estimation 

error *
i,k 1P̂  . Once the closed loop process iterates another time step, the counter k iterates one 

unit, and *
i,k 1X̂   will become *

i,kX̂  for the current iteration. 

The optimal state estimate *
i,k 1X̂   is solved by applying the orthogonal projection described 

previously, in conjunction with propagating the (assumed) linear dynamics through the state 
transition matrix, thus creating a closed loop system which will filter noise from the 
observations, successfully finding the signal (or state) within the addition of Gaussian noise. 

Mathematically, Kalman showed that the optimal state estimate *
i,k 1X̂   is calculated from the 

following formula 

  1
* * * T * T *
i,k 1 i,k|k 1 i,k i,k|k 1 i,k i,k 1 i,k 1 i,k i,k 1 i,k 1 i,k i,k 1

ˆ ˆ ˆ ˆ ˆX X P M M P M M X y


            


 (32) 

Additionally, a recursion relation can be formulated to propagate the covariance forward in 
time, and is given by 

  1
* * * T * T * T
i,k 1 i,k|k 1 i,k i,k 1 i,k 1 i,k 1 i,k i,k 1 i,k i,k 1 i,k|k 1 i,k

ˆ ˆ ˆ ˆ ˆP P P M M P M P M


                (33) 

where i,k  is the covariance of the independent random Gaussian noise input, such that 

T
i,k i,k i,ku u 

 
. Therefore, given an initial estimate of the covariance *

i,0P̂ , an estimate of the state 
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*
i,0X̂ , as well as a covariance of the random process noise, a closed loop algorithm can be used to 

solve for the optimal state and covariance estimates at discrete time intervals given the 

observations    i,1 ,k i,p ,ky ,..., y , thus separating the signal (or state) from the independent random 

zero mean Gaussian noise. This effectively creates an iterative process for solving the Wiener 

equation. In Kalman’s formulation, *
i,k 1X̂   is the estimate for the signal (represented by G(t) in 

Equations 24 and 25) and the diagonals of the covariance estimate *
i,k 1P̂   represent variances (i.e. 

a characteristic of noise in the form of uncertainty) for each state variable. In addition, the above 
formulation for updating state and covariance estimates is based on a batch process, where these 
estimates are updated in one calculation step. Further implementations of this Kalman filter 
algorithm (such as the extended Kalman filter, and unscented Kalman filter) use a sequential 
process, where estimates are updated using multiple calculation steps. Equations 32 and 33 can 
be broken into a sequential process where an initial forecast step propagates estimates forward in 
time to yield 

 f *
i,k 1 i,k|k 1 i,k

ˆ ˆX X    (34) 

and 

 f * T
i,k 1 i,k|k 1 i,k i,k|k 1

ˆ ˆP P      (35)  

If these estimates from Equations 34 and 35, as well as the definition of the cross covariance 

 xy f T
i,k 1 i,k 1 i,k 1P P M   , innovation covariance  yy f T

i,k 1 i,k 1 i,k 1 i,k 1P M P M    , and Kalman gain 

 1xy yy
i,k 1 i,k 1 i,k 1K P P



       are substituted into Equations 32 and 33, the result is 

  * f f
i,k 1 i,k 1 i,k 1 i,k 1 i,k 1 i,k 1

ˆ ˆ ˆX X K y M X       


 (36) 

and 

 * f yy T
i,k 1 i,k 1 i,k 1 i,k 1 i,k 1

ˆ ˆP P K P K       (37) 

In further implementations of this basic Kalman filter algorithm, Equations 36 and 37 are 
modified to handle nonlinear systems (as well as the inclusion of sensor noise), and are found in 
Section 3.2.3 for the extended Kalman filter, and Section 3.2.4 for the unscented Kalman filter. 

3.2.3  The Extended Kalman Filter 
 

One important attribute of the linear Kalman filter is that optimal estimates are based on a 
linear system, with linear measurements with respect to the state vector. However, for the case of 
a nonlinear system (such as the governing equations of satellite motion), the linear Kalman filter 
can actually be reformatted using several methods to account for these nonlinearities. One of the 
oldest and most popular methods for applying the Kalman filter algorithm to nonlinear systems is 
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the extended Kalman filter (EKF), whose inception took place shortly after Kalman’s first paper 
[23]. The EKF algorithm differs from that of the original linear Kalman filter primarily in the 
way state estimates are propagated forward in time, and how a linear approximation is made to a 
nonlinear measurement function. This linear approximation is carried out fairly simply, in which 
the linear measurement matrix Mi;k+1 is approximated as the Jacobian of the nonlinear 
measurement function evaluated at the current object estimate, such that  

 
 

f
i ,k 1

ˆi,k 1 i,k 1 x X

h x
M

x 
  

 
     





  (38) 

where the superscript f represents the state estimate propagated forward in time from time step k 
to time step k +1. It should be noted that Hi;k+1 is a first order approximation of the nonlinear 
measurement function, and therefore may be subject to inaccuracies from neglecting higher order 
Taylor series terms, an aspect of the EKF which may lead to problems when applied to highly 
nonlinear systems [27]. 

Unlike the linear Kalman filter, which used a batch process to propagate the state estimate 
using a state transition matrix simultaneously with calculating the optimal estimate of the current 
time step, the EKF established a sequential process in which the state and covariance estimates 
are propagated first in a forecast step, and then the optimal state and covariance estimates are 

calculated based on observations i,k 1y 


 in an update step. The primary reason for creating this 

sequential process is that unlike the linear Kalman filter, the EKF handles propagates state 
estimates by direct integration of an object’s nonlinear equations of motion (for these studies, the 
equations of motion are presented in Equation 2). This results in a nonlinear transformation 
between time t = k t and t = (k + 1) t, and therefore a batch process like in Equations 32 and 33 
cannot be applied. A general algorithm to the EKF has been well established [25, 48], and has 
also been applied to tracking problems involving orbit determination, similar to the SSA problem 
[23, 29, 28, 21, 49]. 

3.2.3.1		Forecast	Step	
 

Taking object dynamics and measurement to be nonlinear, and therefore described by 
Equations 2 and 15, it follows that the forecast step be carried out by propagating both the state 
and covariance estimates to achieve the forecast state and covariance estimates given in 
Equations 39 and 40 respectively. In this step, the EKF takes an initial estimate the object’s state 
Xi;k and covariance Pi;k and propagates them from t = k t to t = (k + 1) t to obtain the forecast 
estimates for each, 

  f *
i,k 1 i,k

ˆ ˆX X  F  (39) 

 
Tf *

i,k 1 i,k|k 1 i,k i,k|k 1 i,k
ˆ ˆP P Q         (40) 

where  *
i,kX̂F  represents the numerical integration of the nonlinear function  *

i,k
ˆf X , t  from 
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 t k t, k 1 t      . Of particular note is the fact that the covariance is still propagated through 

the linear state transition matrix while the state estimate is propagated nonlinearly by means of 
numerical integration. This linear propagation of the covariance estimate is one facet of the EKF 
which could possibly lead to errors in estimating the covariance should the system be highly 
nonlinear. 

3.2.3.2		Update	Step	
 

In the update step, state and covariance estimates are updated for all objects tasked to be 

observed (methods for determining objects tasked for observation in the set k 1O
 , as well as the 

sets of sensors tasked to observed them i,k 1S
  are detailed in Section 3.3). Measurement data 

from all M   M M   sensors tasked to observe object i at time step k + 1 in the set 

 i,k 1 1 MS s , ,s  
   , (where elements in i,k 1S

  represent a sensor index j) is given by the vector 

 

 

 
 

 

1 1

M M

1 1

M M

i,k 1 s ,k 1 s ,k 1

i,k 1 s ,k 1 s ,k 1

i,k 1

i,k 1 s ,k 1 s ,k 1

i,k 1 s ,k 1 s ,k 1

h x , s

h x , s
y

h x , s

h x , s

 

 

 

 





















  

  



  

  

 
 
 
 
 
 
  
 
 
 
 












 (41) 

Next, optimal state estimates are obtained, first by calculating an estimated measurement 
vector 

 

 

 
 

 

1

M

1

M

f
ii,,kk 11 s ,k 1

f
i,k 1 s ,k 1

i,k 1
f
i,k 1 s ,k 1

f
i,k 1 s ,k 1

ˆh X , s

ˆh X , s
y

ˆh X , s

ˆh X , s





















 

 



 

 

 
 
 
 
 
 
 
 
 
 
 
 












 (42) 

along with the innovation covariance as well as the cross covariance, calculated respectively by 

 yy f T
i,k 1 i,k 1 i,k i,k 1

ˆP H P H    (43) 

 
Txy f

i,k 1 i,k 1 i,k 1
ˆP P H       (44) 
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where 

 

 

 
 

 

1

M

1

M f
i ,k 1

s ,k 1

s ,k 1

i,k 1

s ,k 1

s ,k 1
ˆx X

h x, s
x

h x, s
xH

h x, s
x

h x, s
x

































 
 
 
 
 
 
 
 

  
 
 
 
  

















 (45) 

These are used to calculate the Kalman gain matrix, which is defined as an optimal operator 

that minimizes the trace of the estimated covariance *
i,k 1P̂   [25]. In the linear Kalman filter, the 

same minimization is solved for, but Equations 32 and 33 do not include a specific calculation 
for the Kalman gain matrix. However, through minimal derivation it can be shown that the 
definition of Ki;k+1 in the EKF can also be found in the linear case, but is not defined explicitly in 
Kalman’s original formulation. The Kalman gain matrix is calculated from 

  1xy yy
i,k 1 i,k 1 i,k 1 i,k 1K P P R


         (46) 

where the measurement noise covariance i,k 1R 
  in the set i,k 1S

  tasked to observe it is calculated 

for object i based on the sensors by 

 

 
 

 

1

M

1

M

2

s ,k 1

2

s ,k 1

i ,k 1 2
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  (47) 

Using these variables, the state and covariance estimates are updated using the equations 
* f
i,k 1 i,k 1 i,k 1 i,k 1 i,k 1

ˆ ˆ ˆX X K y y        


    (48) 

* f yy T
i,k 1 i,k 1 i,k 1 i,k 1 i,k 1 i,k 1

ˆ ˆP P K P R K
             (49) 

It should be noted that if the linear Kalman filter is broken up into a sequential process like the 
EKF, Equations 48 and 49 are the same as Equations 32 and 33, except that Mi,k+1 is replaced by 

Hi,k+1 and the propagation of the state estimate changes from linear (using i,k|k+1) to nonlinear 
(using F ). 
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An algorithm which describes the step-by-step process of implementing the EKF for an 
object i (assuming measurement data exists for all Ms sensors at each time step) can be found in 
Appendix B. 

3.2.4  The Unscented Kalman Filter 
 

For highly nonlinear systems, or those in which first order accuracy is not good enough to 
properly describe the system, another application of the Kalman filter algorithm exists which 
makes no linear approximations to the dynamics or measurement functions. This algorithm, 
originally proposed by Julier and Uhlmann in 2004 [27] is known as the Unscented Kalman 
Filter (UKF) and can provide a more robust filter than the EKF for certain nonlinear systems. 
Unlike the EKF, the UKF creates a distribution of sigma points around the state estimate, and 
propagates them through the nonlinear dynamics and measurement functions directly. This 
propagation of sigma points is then applied to statistical analysis to directly calculate various 
parameters in the Kalman filter algorithm, leading to second order or higher accuracy in the 
approximation of the nonlinearities of the system [27]. This nonlinear propagation, followed by 
direct calculation of the mean and covariance based on the sigma point distribution encompasses 
the essence of the unscented transformation used in the UKF, and can be seen in a general sense 
in Figure 8. 
 
 
 
 
 
 
 
 
Figure 8. Illustration of propagation of sigma points through nonlinear object equations of 
motion to calculate forecast state and covariance estimates. The ellipses represent a 3 Gaussian 

error ellipse, which can be obtained from the covariance estimate *
kP̂  and f

k 1P̂   

3.2.4.1		Initialization	
 

The following is a description of applying the UKF, subject to purely additive zero mean 
Gaussian process and measurement noise, as presented in [1]. Given an initial object state 

estimate, *
i,0X̂  and covariance estimate *

i,0P̂  at time t = 0, an initial set of sigma points i,0  are 

populated 

   
* CH CH

i,0 i,0 n 1 i,0 i,01 2n 1
ˆ ˆ ˆX 1 n 0 P P 

           (50) 

where CH
i,0P̂  represents the Choleski factorization of *

i,0P̂  such that 
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T
CH CH *
i,0 i,0 i,0

ˆ ˆ ˆP P P          (51) 

and  is a scaling parameter, defined by  2 n n       [28]. The constant  is generally 

small, and is chosen between the range [0,1], while the constant  is used for tuning of higher 
order moments of the covariance ( 3 n    for Gaussian distributions). Choices for these 
constant parameters can vary, whose origins and selection strategies are detailed in [27] and [1]. 

For these studies,  = 0.001 and 3 n    are used based on suggestions in various works using 
a similar UKF algorithm for orbit determination problems [28, 29].  

3.2.4.2		Forecast	Step	
 

For some time step k, the sigma points i,k  are propagated through the nonlinear system 

dynamics from t = kt to t = (k + 1)t 

 f
i,k 1 i,kF        (52) 

Once the sigma points are propagated, the forecast step is obtained from taking a weighted 
average of sigma points 

2n
f f ,
i,k 1 x i,k 1

0

X̂ W  
 



        (53) 

where the mean weights xW   corresponding to each sigma point can be calculated by 

 

 
x

, 0
n

W
1

, 1, , 2n
2 n



     
  
  



     (54) 

and  represents a sigma point in the 2n + 1 collection of sigma points for an object, represented 

by f
i,k 1  ( stands for a column in the [ n 2n 1  ] sigma point matrix represented by f

i,k 1 ). 

Given the forecast state estimate in Equation 54, the forecast covariance estimate is calculated 
similarly by 

2n T
f f , f f , f
i,k 1 p i,k 1 i,k 1 i,k 1 i,k 1 i,k

0

ˆ ˆ ˆP W X X Q  
    



                (55) 

where the covariance weights pW  corresponding to each sigma point can be calculated by 

   

 

2

x

1 , 0
n

W
1

, 1, , 2n
2 n



        
  
  



     (56) 

where the constant  is another parameter used to help incorporate higher order effects, and is set 
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at the optimal value for a Gaussian distribution,  = 2 [27]. It should also be noted that in cases 
where the process noise and measurement noise are not purely additive, separate sigma points 
will need to be added in accordance with [27] and [29]. 

3.2.4.3		Update	Step	
 

In the update step, state and covariance estimates are updated for all objects tasked to be 
observed (methods for determining objects tasked for observation in the set k 1O

 , as well as the 

sets of sensors tasked to observe them i,k 1S
  are detailed in Section 3.3). Measurement data from 

all M  ( M M  ) sensors tasked to observe object i at time step k + 1 in the set 

 i,k 1 1 MS s , ,s  
    (where elements in i,k 1S

  represent a sensor index j) is given by Equation 41. 

In order to calculate the measurement estimate i,k 1ŷ  , the sigma points are inputted into the 

nonlinear measurement function such that 
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    (57) 

The estimated measurement can then be calculated from 
2n

i,k 1 x i,k 1
0

ŷ W Y 
 



        (58) 

It is again important to recognize that the UKF does not rely on a linear approximation of the 

Taylor series expansion of the measurement function about f
i,k 1X̂  , as with the EKF, but instead 

is accurate to at least second order, or even third order for Gaussian inputs. A proof of this 
accuracy is provided in both [27] and [1]. 

With the necessary calculations to perform the update step, the cross covariance is calculated 
by 

2n Txy f , f
i,k 1 p i,k 1 i,k 1 i,k 1 i,k 1

0

ˆ ˆP W X Y y  
    



             (59) 

while the innovation covariance is calculated by 
2n Tyy

i,k 1 p i,k 1 i,k 1 i,k 1 i,k 1
0

ˆ ˆP W Y y Y y  
    



             (60) 

All the necessary information to calculate the updated state and covariance estimates in 
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Equations 48 and 49 is obtained, to which these calculations are carried out in the same manner 
as in the EKF and linear Kalman filter (should it be separated into a sequential process). Again, 
as with comparing the EKF to the linear Kalman filter, the UKF carries out the same calculation 
process as the EKF, it just handles propagating the state and covariance estimates, as well as 
approximating the measurement function differently. 

3.2.4.4	Performance	Discrepancies	Between	the	UKF	and	EKF		
 

Due to the method of using sigma points to calculate forecast estimates, measurement 
approximations, and other variables, many studies have shown the UKF to produce slightly 
better estimates when applied to nonlinear systems than the EKF [28], [29]. It is expected that 
these benefits will also be present in the calculation of various tasking metrics, and the UKF 
should gain increased performance when compared to the EKF for multi-object tracking 
scenarios which employ dynamic sensor tasking. 

One such illustration of these advantages is in how the UKF better handles the calculation of 
forecast step uncertainty (reflected by the covariance estimate) than the EKF for nonlinear 
systems. Using the same example in Section 3.2.1, Figures 9 and 10 show how both the EKF and 
UKF propagate the initial mean given in Equation 22 with an initial Gaussian covariance derived 
from the distribution generated from standard deviations in Equation 23 as seen in Figure 3. 
Figures 9 and 10 show that the resulting estimated uncertainty obtained from the UKF provide a 
better model for the overall uncertainty of the non-Gaussian distribution than the EKF, an 
advantage that can lead to better overall estimates, and as this research will illustrate, better 
tasking decisions. 

An algorithm which describes the step-by-step process of implementing the UKF for an 
object i (assuming measurement data exists for all Ms sensors at each time step) can be found in 
Appendix B.  
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Figure 9. Propagation of initial Gaussian distribution showing contour overlay of the evaluation 
of Equation 19 with EKF forecast mean and covariance. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10. Propagation of initial Gaussian distribution showing contour overlay of the 
evaluation of Equation 19 with UKF forecast mean and covariance. 

3.2.5		Gaussian	Mixture	Models	and	the	AEGIS	Filter		
 
Recently introduced by DeMars et al. [35, 36, 2], the AEGIS filter reflects an adaptation to a 
GMM filtering strategy, in which a series of L weighted Gaussian PDFs is used within a UKF 
filtering scheme to obtain state and covariance estimates. The main conjecture of this method is 
that the use of a GMM to describe the overall PDF is advantageous when applied to non-
Gaussian PDFs (such as the case with orbit determination problems). In addition, the AEGIS 
filter employs a unique method for determining when a single Gaussian PDF must be split into 
multiple ones based on a calculation of entropy, which reflects the presence of nonlinearity in a 
PDF. As follows are details of both GMM filters, and how they are implemented into the AEGIS 
filtering strategy. 
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3.2.5.1		The	Gaussian	Mixture	Model	Distribution	
 
As illustrated by the work of Sorenson et al. [31], GMMs are shown to be extremely helpful 
because they can use the easily characterized Gaussian PDF to approximate a large class of 
PDFs. This is achieved by using several Gaussian PDFs to approximate a single non-Gaussian 
PDF, therefore more accurately reflecting a PDF resulting from propagating an initially Gaussian 
PDF through a nonlinear system. In the GMM case, the overall PDF of the distribution is 
described by the summation (presented to reflect an object i and time step k used in these 
studies) 

   
L

gmm * * l g *,l *,l
i,k i,k i,k i,k i,k i,k i,k i,k

l 1

ˆ ˆp x ;X , P p x ;X , P


  
   (61) 

where the index l represents a single component of the GMM containing L total Gaussian PDFs, 

and l
i,k  is a weight for the lth component of the GMM for object i at time step k subject to the 

constraints 

 
L

l l
i,k i,k

l 1

0 l 1, 2,..., L and


         (62) 

Sorenson also illustrated that as the number of components in the GMM increases, the hyper 
volume of their individual covariances decreases, leading eventually to each component 
reflecting an impulse function. The result is that given an unbounded number of components, a 
GMM can characterize a large number of non-Gaussian PDFs while still maintaining the 
convenient Gaussian property of each component. This fact makes the use of GMMs very 
convenient when used within an estimation process for a nonlinear system driven by some form 
of Kalman filtering scheme. 

3.2.5.2		Splitting	a	Gaussian	Distribution	
 

Of critical importance in the implementation of a filtering scheme using a GMM (and 
therefore implementation of the AEGIS filter) is determining how to split a single Gaussian 
distribution into several Gaussian PDFs. The following is a brief synopsis of the methods used 
by DeMars [2] which concerns methods of splitting a multivariate7 Gaussian distribution into 
one or more smaller Gaussian distributions. Therefore, in this case the assumption is that the L 
total means and covariances in the GMM can be summated subject to a weight assigned to each 
component to yield an approximation of a single Gaussian PDF 

   
L

g * * l g *,l *,l
i,k i,k i,k i,k i,k i,k i,k i,k

l 1

ˆ ˆp x ;X , P p x ;X , P


  
    (63) 

Several recent works have illustrated methods for splitting both univariate [50, 51] and 

                                                            
7  A multivariate Gaussian distribution is described by a mean and covariance, while a 

univariate is described by a mean and variance 
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multivariate [52, 53] Gaussian distributions into two or more element GMMs. In the AEGIS 
filter, DeMars builds on methods first presented by Huber et al. [54] posing a splitting method 
for multivariate distributions based on univariate splitting techniques projected along a single 
direction of the multi-variate distribution. Therefore, an understanding of the splitting of a 
univariate distribution must first be presented before the method for splitting a multivariate 
distribution can be explained. 

In the univariate case, a splitting technique is derived that can split a standard Gaussian 
distribution into multiple components. This is achievable due to the convenient property that any 
Gaussian distribution can be created by applying a linear transformation to the standard Gaussian 
distribution [2]. The standard univariate Gaussian distribution, which has zero mean and a 
standard deviation of one can be described by the PDF (dropping the subscripts i and k to reflect 
a general case, and not specific to the SSA problem in these studies) 

   g
1p x p x;0,1       (64) 

where x is the single random state variable in this general example used to calculate the PDF. 

The goal of splitting  1p x  is to come up with a GMM  2p x which approximates  1p x  such 

that 

   
L

l g l 2
2

l 1

p x p x; m ,


  


 



      (65) 

where lm

 is the thl  component mean and 2  is the variance of each of the l  components of the 

GMM. DeMars suggests that each standard deviation   be equal, due to problems that may arise 
from some being too large and others too small should this constraint not exist. Therefore, to 

gain the best approximation of 2 1p p  it is necessary to form a minimization problem which 

finds the elements lm

,  , and lw


 which results in both the smallest value of 2  and ensures a 

minimal distance between the 1p  and 2p  distributions. To achieve this, DeMars suggests a cost 

function of 

  2
1 2J D p ,p         (66) 

where  is a scale factor to aid in the multi objective minimization of Equation 66 and  1 2D p ,p  

is the L2 distance between the two distributions defined as [2]8 

                                                            
8 In this definition, 1p  and 2p  are both assumed to be GMMs of the form in Eq. 61. This form 

remains valid for the case of 1p  being a univariate standard Gaussian distribution and 2p  being a 

univariate GMM. In this case, L1 = 1, L2 = L, 1 = 1, 1m 0


, and P1 = 1 while for each l  

component of 2p , l l
2m m
 

, and l 2
2P  


 . 
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 

   (67) 

where K( ) is derived from DeMars and Maybeck [55] as 

         1 2 T 1

1 2 1 2 1 2 1 2 1 2 1 2

1
K m , m , P , P 2 P P exp m m P P m m

2

         
 

     
 (68) 

The minimization of Equation 66 for a case of L = 3 has been executed by DeMars and will 
be used in the application of the AEGIS filter in these studies. Values for the cost function scalar 

value , constant variance 2 , and component means lm
  and weights l


 for this case can be 

found in Table 1, and reflect values identical to those used in the work of DeMars. 
Using the three component splitting library given in Table 1, a univariate splitting method 

can be applied to a multivariate GMM which approximates the PDF in Equation 61. This is 
achieved by applying the univariate splitting method to each variable in the multivariate PDF, 
acting in a single direction of the multivariate PDF. Intuition would say that these directions 
should be determined by the principal axes of the covariance matrix (i.e. the eigenvectors of the 
covariance matrix), but aside from giving physical meaning to the splitting directions, this turns 
out to be unnecessary. In fact, a simple square root factor of the covariance matrix is all that is 
needed to determine a direction in which to apply a univariate splitting technique [2]. 
 

Table 1. Weights  l


, means  lm


, and variance    for a L  = 3 and   = 0.001 solution to 

the minimization problem outlined in Equation 66. These represent the splitting of an original 
Gaussian PDF to be approximated by three Gaussian PDFs with the corresponding weights and 
means, and all having equal variance. 

l  l

 

lm

   

1 0.225224624913675 -1.05751546147588 0.671566288664076 

2 0.54955075017265 0 0.671566288664076 

3 0.225224624913675 1.05751546147588 0.671566288664076 

 
To illustrate this method, we start with an original weighted Gaussian PDF which is desired 

to be split into a GMM approximating the original PDF 

   
L

l g *,l *,l l g *, l *, l
i,k i,k i,k i,k i,k i,k i,k i,k

l 1

ˆ ˆ ˆ ˆp x ; X , P p x ;X , P


  


  



 
   (69) 

where the PDF on the left hand side of Equation 69 represents a weighted Gaussian PDF before 
splitting, and the right hand side reflects a GMM after splitting. It should be noted that if the left 



39  
Approved for public release; distribution is unlimited. 

 

hand side was to represent the original Gaussian PDF defined by the state and covariance 

estimates  g * *
i,k i,k i,k

ˆ ˆp x ;X ,P


 then Equation 69 would be replaced by 

   
L

g * * l g *,l *, l
i,k i,k i,k i,k i,k i,k i,k

l 1

ˆ ˆ ˆ ˆp x ;X , P p x ;X , P


  


  



 
   (70) 

where  = 1. Using this definition, and calculating a square root factor (via Choleski 

factorization) for the covariance of the original PDF, 
T

CH,l CH,l *,l
i,0 i,0 i,0

ˆ ˆ ˆP P P     where 

CH,l l,1 l,n
i,0 i,k i,k

ˆ ˆ ˆP p ,..., p    , the weights, means and covariances of the L  components in the GMM 

performed along the thn  axis can be calculated from  
l l l
i,k i,k   
 

       (71) 

*,l *,l l l,n
i,k i,k i,k

ˆ ˆ ˆX X m p 
         (72) 

T
*,l CH,l CH,l
i,k i,k i,k

ˆ ˆ ˆP P P   
  

      (73) 

where CH,l l,1 l,n l,n
i,k i,k i,k i,k

ˆ ˆ ˆ ˆP p ,..., p ,..., p   
  . Again, it is important to note that should this split be the 

original Gaussian PDF and not of a component of a GMM, then Equations 71-73 would be 
replaced by 

l l
i,k  
 

       (74) 

*,l * l n
i,k i,k i,k

ˆ ˆ ˆX X m p 
         (75) 

T
*,l CH,l CH,l
i,k i,k i,k

ˆ ˆ ˆP P P   
  

      (76) 

where CH,l 1 n n
i,k i,k i,k i,k

ˆ ˆ ˆ ˆP p ,..., p ,..., p   
  , CH 1 n

i,k i,k i,k
ˆ ˆ ˆP p ,...,..., p     and 

T
* CH CH
i,k i,k i,k

ˆ ˆ ˆP P P    . 

3.2.5.3		Merging	a	GMM	
 

The method of merging a GMM into a single Gaussian PDF is a necessary process in these 
studies, especially in the calculation of tasking metrics generated from AEGIS filter estimates, or 
assessing AEGIS performance. In some cases, the method of merging a GMM is necessary in a 
recursive GMM-based filtering process, especially if components of a GMM are redundant. In 
this case, some methods have been proposed which merge components based on their proximity 
calculated from a distance measure [56], while attempting to optimize a cost function 
determining components to merge result in the minimum change between an original GMM and 
a reduced one [57].  

In these studies, a primary application on the merging of GMM components is to determine 
the equivalent Gaussian PDF which replicates the GMM (an approximation reflected in Equation 
63). To calculate this, DeMars details how determining the expected values of each side of an 
equation similar to Equation 63 and assuming all PDFs are Gaussian can yield approximations 
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for a single mean and covariance of a GMM, given by 

 
lL

*,gmm i,k *,l
i,k i,kL l

l 1 i,kl 1

ˆ ˆX X








 (77) 

and 

  
lL T T

*,gmm i,k *,l *,l *,l *,gmm *,gmm
i,k i,k i,k i,k i,k i,kL l

l 1 i,kl 1

ˆ ˆ ˆ ˆ ˆ ˆP P X X X X





        


 (78) 

It should be noted that in Equation 78, this weighted average covariance must take into account 
how far each GMM component mean (i.e. the lth component) is away from the average weighted 

mean (given in Equation 77), which is the reason why *,l
i,kX̂  and *,gmm

i,kX̂  are included in this 

equation [2]. Furthermore, an approximate single Gaussian mean and covariance can be 
calculated during anytime within a recursive GMM filtering strategy, such as in the forecast step, 
or once updates are obtained. 

3.2.5.4		Detecting	Nonlinearity	in	Propagation	of	a	Gaussian	Distribution		
 

Given the nonlinear orbital dynamics governing the objects tracked in the SSA problem, a 
single Gaussian distribution may not provide an accurate approximation to the non-Gaussian 
error propagation, as illustrated in Section 3.2.1. However, should the degree of nonlinearity be 
small, a single Gaussian distribution may provide a suitable approximation to the error 
distribution, negating the need to split a Gaussian PDF into a GMM. Therefore, determining 
when these splitting events occur should be based on the degree of nonlinearity in the 
propagation of a covariance estimate. Junkins et al. [58] investigated the error propagation in 
orbital mechanics (using a two-body force model with J2 and atmospheric drag perturbations), 
and discovered that the effects of nonlinearity in the error propagation are greatly affected by the 
coordinate system chosen. In this case, nonlinearity was measured by utilizing linear 
approximations of the orbital dynamics (i.e. a state transition matrix) to obtain a scalar 
quantification of nonlinearity called a nonlinearity index. Others such as Park et al. [59] have 
built on this concept of using the state transition matrix to determine nonlinearity, but in this case 
higher order terms were included to use instead a state transition tensor to detect nonlinearity. 

The AEGIS filter proposes a new method for determining nonlinearity, by utilizing the 
Jacobian of the nonlinear orbital dynamics (also used in the calculation of a state transition 
matrix) and covariance estimates in order to calculate the differential entropy of the system while 
estimates are propagated from time k to time k+1 [2, 35, 36]. Given the basic definition for 
differential entropy of a random variable x


 [10] 

       x p x log p x dx 
   

H  (79) 

and taking  p x


 to be Gaussian of the form in Equation 19 and evaluating Equation 79 the result 

(written in the nomenclature used in these studies) is 



41  
Approved for public release; distribution is unlimited. 

 

 l f ,l
i,t i,t

1 ˆlog 2 eP
2

H  (80) 

where f ,l
i,tP̂  represents a forecast covariance estimate of component l in the GMM of object i evaluated 

at some propagation time t between the forecast time steps k → k + 1. Equation 80 serves as an 
easily computable metric which is used to determine the differential entropy of a nonlinear 
system, given some covariance estimate. 

If the derivative of this system with respect to time is taken, using the matrix calculus 
property [35]  

      1
f ,l f ,l f ,l f ,l
i,t i,t i,t i,t

d dˆ ˆ ˆ ˆP P tr P P
dt dt

    
 (81) 

along with the linearized dynamics governing the covariance estimate [25] 

  
T

f ,l f ,l f ,l
i,t i,t i,t

i,t i,t

d f fˆ ˆ ˆP P P
dt x x

            
   (82) 

and the commonly known matrix trace operator property tr(A) = tr(AT), a differential equation 
for the linearized entropy is obtained 

 l
i,t

i,t

f
tr

x

       
 H  (83) 

Therefore, two methods exist for calculating the differential entropy l
i,t
H . The first is a 

nonlinear case, in which Equation 80 is evaluated at propagation time t using covariance estimate 
f ,l
i,tP̂  generated via nonlinear propagation (i.e. propagated using UKF methods described in 

Section 3.2.4). The second is a linear case in which Equation 83 is evaluated using numerical 

integration techniques to find l
i,tH  using only the dynamics of the system and the current state 

estimate to evaluate  
i,t

f x 


. As long as the linear case matches the nonlinear case, it is 

assumed that nonlinear effects are minute on the system, and a single Gaussian approximation 
for the PDF of component l is sufficient. Conversely, if a difference exists between the two 
cases, the indication is that nonlinear effects are increasing during propagation, and the 
component l should be split further into more GMM components to better approximate the now 

non-Gaussian PDF. Therefore, if the difference between the evaluation of l
i,tH  using Equations 

83 and 80 extends beyond a certain tolerance, it is assumed that nonlinear effects have influenced 

the propagation of f ,l
i,tP̂ , and further splitting on this component is done using methods described 

in Section 3.2.4. It should be noted that the evaluation of Equation 80 is only of value if used 
within a UKF, or similar nonlinear propagation scheme. Should a linear propagation scheme be 
used (such as the EKF), there would be no difference between Equations 83 and 80, since both 
would reflect a linear case, and nonlinear effects would be undetectable.  
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3.2.5.5		The	AEGIS	Filter	
 

By using a UKF filtering scheme, the AEGIS filter works in much the same way that a UKF 
does, except it applies the UKF approach to L components comprising a GMM which 
approximates a single Gaussian PDF reflected by an object’s state (mean) and covariance 

estimates. The GMM, which is initially a single component Gaussian PDF described by *
i,0X̂  and 

*
i,0P̂ , can be manipulated during the forecast step within a UKF propagation scheme to be split 

into multiple components as significant nonlinearity is detected in one or more GMM 
components. During this forecast step, the GMM maintains the constraints in Equation 62, and 
will continue to add components to the GMM as needed until this step is completed. 

Initialization 
 
Starting with an initial distribution of sigma points calculated from9 

    
* CH CH

i,0 i,0 n 1 i,0 i,01 2n
ˆ ˆ ˆX 1 n 0 P P 

      (84) 

These sigma points are propagated through the nonlinear system dynamics until sufficient 
effects of nonlinearity on the propagation are detected, or until the first time step comes to an end 
at k = 1. 

Forecast Step 
 
In a general propagation of sigma points from time step k to k + 1, assuming that for some GMM 

component l of object i the sigma points at time step k are given by l
i,k 10. 

The sigma points of this component at time t in the propagation from time steps k to k + 1 is 

  l l
i,t i,k  F  (85) 

where at time t in the numerical integration process, the state estimate is evaluated from 
2n

l l,
i,t x i,t

1

X̂ W 






                    (86)  

with weights xW   

 x

1
W , 1,..., 2n

2n
    (87)  

                                                            
9 Note that these 2n sigma points can create the same distribution mean and covariance as the 

2n + 1 sigma point distribution illustrated in Eq. 50 and Section 3.2.3, as long as the constants κ, 
α, and β are chosen to reflect a Gaussian distribution where the weight associated with the 
additional sigma point calculated in Eq. 54 and 56 is zero (e.g. if κ = 0, α = 1, and β = 0). 

10 For the initial Gaussian distribution, the GMM would only have one component, so this 
general set up for the AEGIS forecast step is valid even in the initial case when L = 1 and k = 0 
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The Jacobian of the state dynamics can be evaluated at time step k by applying Equation 6 

with *
i,l i,k

ˆx X


 as an initial condition in the numerical integration of Equation 83 to any 

integration time t, obtaining a linear approximation of l
i,tH . 

Likewise, at any time t the covariance estimate is determined from 

 
2n T

l l, l l, l
i,t p i,t i,l i,t i,l

1

ˆ ˆ ˆP W X X  



 


          (88) 

where  
p xW W    . Next, this covariance estimate (recalling it was propagated nonlinearly) 

can be plugged into Equation 83 to calculate the nonlinear differential entropy. If the difference 
between the nonlinear differential entropy and its linear approximation exceeds a user defined 

tolerance at time t, then the component l of the GMM describing object i must be split into L  
components such that 

    
L

l g l l l g l l
i,k i,t i,t i,t i,k i,t i,t i,t

l

ˆ ˆ ˆ ˆp x ;X , P p x ;X , P  


  



 
 (89)  

if L > 1, and 

   
L

g f f l g l l
i,t i,t i,t i,k i,t i,t i,t

l

ˆ ˆ ˆ ˆp x ;X , P p x ;X , P 


  



 
    (90) 

if L = 1. It should be observed that in Equations 89 and 90 the weights remain unchanged from 
their values at the time step k, implying that component weights remain constant during 
propagation, and are only altered if a splitting process occurs. 

Splitting is achieved by applying the three component splitting library constants given in 
Table 1 to Equations 71-78 for the case of L > 1, and to Equations 79-81 if L = 1. For any l 

component that was split in such a way, sigma points for the L  components generated from this 
splitting are calculated from 

   
l CH,l CH,l

i,t i,t n 1 i,t i,t1 2n
ˆ ˆ ˆX 1 n 0 P P , l 

     
        (91) 

where CH,l CH,l l
i,t i,t i,t

ˆ ˆ ˆP P P   
  

. 

After all sigma points are drawn for each new l  component of the l  total original l 
components which were split, the number of components in the new GMM is reset such that 

 L L l L 1    , and each component in the total GMM is once again referenced by the same 

nomenclature, l, such that 
L

l 1
l L


 . This is continued until process of detecting nonlinearity 

followed by splitting the GMMP the propagation step is completed at the time step k + 1. Once 
this occurs, the forecast sigma points for each l component in the GMM are 

  f ,l l
i,k 1 i,t    F  (92) 

where t  is the last time between the time steps k and k +1 in which a splitting occurred. The 
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forecast state and covariance estimates for the lth component in the GMM are then evaluated by 

 
2n

f ,l f ,l,
i,k 1 x i,k 1

1

X̂ W 



 


   (93) 

and 

 
2n T

f ,l f ,l, f ,l f ,l, f ,l
i,k 1 p i,k 1 i,k 1 i,k 1 i,k 1 i,k

1

ˆ ˆ ˆP W X X Q  



     


           (94) 

Update Step 
 

The update step in the AEGIS filter remains relatively unchanged from that in a standard 
UKF, except that the AEGIS update must not only provide updates for each l component in the 
GMM, but also update the weights associated with those components. Sorenson et al. [31] 
originally came up with the method for updating these weights based upon applying Bayes rule 
to determine the posterior GMM distribution conditional on the measurement data. For these 

studies, measurement data is used from all  M M M    sensors tasked to observe object i 

(methods for determining objects tasked for observation in the set k 1O
 , as well as the sets of 

sensors tasked to observed them i,k 1S
  are detailed in Section 3.3) at time step k + 1 in the set 

 i,k 1 1 MS s ,...,s  
   where elements in i,k 1S

  represent a sensor index j. This measurement vector 

is given by Equation 42. 
Using the nomenclature of these studies, and constraining all distributions to be Gaussian, 

Sorenson et al. determined the a posteriori distribution conditional on the total number of 
measurements i,k 1y 

  to be modeled as a GMM from 

     
L

g g * * l g *,l *,l
i,k 1 i,k 1 i,k 1 i,k 1 i,k 1 i,k 1 i,k 1 i,k 1 i,k 1

l 1

ˆ ˆ ˆ ˆp x | y p x ;X , P p x ;X , P        


     
                (95) 

where l
i,k 1   is the updated GMM component weight, given by 

 
 
 

l g l yy,l
i,k i,k 1 i,k 1 i,k 1l

i,k 1 L l g l yy,l
i,k i,k 1 i,k 1 i,k 1l 1

ˆp y ; y , p

ˆp y ; y , p





  

   
  






  (96) 

Using UKF update techniques applied to each l component in the GMM representing object i, 
the measurement estimate i,k 1ŷ   is calculated by inputting the sigma points for component l into 

the nonlinear measurement function such that 



45  
Approved for public release; distribution is unlimited. 

 

 

 

 
 

 

1

M

1

M

f ,l,
i,k 1 s ,k 1

f ,l,
i,k 1 s ,k 1l,

i,k 1
f ,l,
i,k 1 s ,k 1

f ,l,
i,k 1 s ,k 1

h , s

h , s
Y , 1,...,2n

h , s

h , s




































 

 



 

 

 
 
 
 
 
  
 
 
 
 
 
 











 (97) 

The estimated measurement is calculated from this transformation of each sigma point 
through the measurement function by 

 
2n

l l,
i,k 1 x i,k 1

1

ŷ W Y 


 



   (98) 

With the necessary calculations to perform the update step, the cross covariance is calculated 
by 

2n Txy,l f ,l, f ,l f ,l, f ,l
i,k 1 p i,k 1 i,k 1 i,k 1 i,k 1

1

ˆ ˆ ˆP W X Y y  



    


               (99) 

while the innovation covariance is calculated by 

 
2n Tyy,l f ,l, f ,l f ,l, f ,l

i,k 1 p i,k 1 i,k 1 i,k 1 i,k 1
1

ˆ ˆ ˆP W Y y Y y  


    



          (100) 

and the Kalman gain is obtained from 

   1l xy,l yy,l
i,k 1 i,k 1 i,k 1 i,k 1K P P R 

      (101) 

where i,k 1R
  is calculated using Equation 47. Next, the GMM component weights are updated 

using Equation 96, while the state and covariance estimates are updated from 

 *,l f ,l l l
i,k 1 i,k 1 i,k 1 i,k 1 i,k 1

ˆ ˆ ˆX X K y y        


 (102) 

  T*,l f ,l l yy,l l
i,k 1 i,k 1 i,k 1 i,k 1 i,k 1 i,k 1

ˆ ˆP P K P R K
           (103) 

3.2.5.6	Performance	Discrepancies	Between	the	UKF	and	AEGIS		
 

Although the AEGIS filter reflects a recent development in the area of nonlinear estimation, 
DeMars et al. have tested it within the nonlinear system of orbital dynamics, comparing its 
performance to the UKF [2, 35, 36]. Recently, they have also tested the AEGIS filter in regards 
to its effectiveness to calculate various information metrics (such as Renyi and Kullback-Leiber 
divergence) to be used in tracking problems similar to those found in SSA [60]. These 
preliminary studies have shown that the GMM approach to modeling and nonlinearly 
propagating a Gaussian PDF through orbital dynamics results in better uncertainty models as 
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opposed to the single Gaussian PDF approach implemented by the UKF. The conjecture for 
these studies is that, much like comparing the EKF to the UKF, when comparing the UKF to the 
AEGIS filter, performance should be further increased using the AEGIS filter due primarily to 
the improved methods of uncertainty modeling. 

In a similar fashion to Section 3.2.3, an illustration of these advantages in how the AEGIS 
filter better handles the calculation of forecast step uncertainty (reflected by the covariance 
estimate) than the UKF for nonlinear systems. Using the same example in Section 3.2.1, Figures 
9 and 10 show how both the EKF and UKF propagate the initial mean given in Equation 22 with 
an initial Gaussian covariance derived from the distribution generated from standard deviations 
in Equation 23 as seen in Figure 3. Figure 11 shows how the AEGIS filter propagates these same 
initially (single component) Gaussian distributions, and how the resulting GMM PDF matches 
the uncertainty distribution better than the single Gaussian PDFs calculated using the EKF and 
UKF. 

An algorithm which describes the step-by-step process of implementing the AEGIS filter for 
an object i (assuming measurement data exists for all Ms sensors at each time step) can be found 
in Appendix B.  
 
 
 
 
 
 
 
 
 
 
 
 
Figure 11. Propagation of initial Gaussian distribution with GMM PDF contour overlay 
calculated from propagating initial Gaussian PDF using AEGIS methods 
 

3.3 Sensor Tasking 
 

Once the respective filters are applied to the multi-object satellite tracking problem, an issue 
arises regarding which objects to observe, and which to ignore should more than one be visible 
to a sensor at a certain time. This decision process is henceforth known as sensor tasking, and is 
implemented in coordination with the filtering process. In order to carry out these tasking 
decisions, some form of metric must be obtained, so that objects can be ranked (or prioritized) 
based on some performance criteria. This criterion takes the form of a utility metric which is 
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gathered from the physical measurements taken on those objects, or the estimates of their states 
and covariances given by the filters. As follows are descriptions of three candidates for these 
utility metrics, and how they are obtained from the filter estimates and sensor measurements. 
Furthermore, each utility metric requires a separate decision process which determines the 
object-sensor pairs used for observation, given all of the possible object-sensor pairs at that time. 
Therefore, the tasking component of this simulation is segmented into determining the available 
object-sensor pairs and assigning a utility metric to each, followed by a decision process which 
allocates sensor resources based on these metrics. 

3.3.1  Tasking Problem Organization 
 

Given forecast step object state and corresponding uncertainty estimates f
i,k 1X̂   and f

i,k 1P̂   

described in Section 3.2, available object-sensor pairs (the sets a
k 1O   and a

i,k 1S   described in 

Section 3) are determined from Equations 17 and 18, and two s sN M  matrices will be 

calculated. 
The first, called the visibility matrix, k 1   (containing elements (i, j),k 1  ) gives a numerical 

representation of the priority for measuring a particular object. 

 

   

   

s

s s s

1,1 ,k 1 1,M ,k 1

k 1

N ,1 ,k 1 N ,M ,k 1

 


 

 



 

 
 

  
 
 



  



 (104) 

Should a specific object i and sensor j pair be available for observation (i.e. a
k 1i O   and 

a
i,k 1j S  ), the element  i, j ,k 1   will be determined by calculating a utility metric based on the 

method of tasking chosen. Should the object-sensor pair not be available for observation, the 

element  i, j ,k 1   will be assigned a value that eliminates that object-sensor pair from being 

selected for tasking (for this studies, this will be  i, j ,k 1   = 0). 

Assuming a constraint that only one object can be observed by a sensor at any particular 
time, the matrix k 1  k+1 is then used in a decision making process which produces a second 

s sN M  matrix called the decision matrix, k 1  . 

s

s s s

(1,1),k 1 (1,M ),k 1

k 1

(N ,1),k 1 (N ,M ),k 1

 


 

 



 

 
 

  
 
 



  



                                                (105) 

The elements of this matrix  i, j ,k  are binary where values of 0 indicate the object i is ignored 

(or simply not available) by sensor j, and 1 if satellite i is tasked to be observed by sensor j. 
While the calculation methods to obtain k 1   will differ for each method of tasking, they will all 
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be subject to a binary element and single object to one sensor constraints 

       
sN

si, j ,k 1 i, j ,k 1
i 1

1, j 1,..., M and 0,1 ; i, j  


      (106) 

Methods of applying these constraints to calculate the decision matrix will revolve around 
either a continuation of previous work utilizing Fisher information gain (FIG) as a tasking metric 
[21], or new methods utilizing largest Lyapunov exponent estimation (LLE) or Shannon 
information gain (SIG). For FIG tasking, a utility metric is calculated from the FIG for each 
available object-sensor pair, thus providing the elements for the visibility matrix. Next, A linear 
programming problem will be applied to the visibility matrix to determine a decision matrix 
which maximizes total information gained at a particular time step. 

In SIG tasking, a small scale, yet simple dynamic programming problem is solved to select 
the object each sensor will observe at a given time step. In LLE tasking, elements of the visibility 
matrix for each available object-sensor pair will be determined from the LLE of each object. In 
this case, the decision process is greatly simplified so that each sensor views the object which 
has shown the greatest tendency towards divergence in its estimation error, given all the possible 
objects it can view at that time. Specific details of the calculation of the visibility and decision 
matrices using FIG, SIG, and LLE methods are found in Sections 3.3.2 – 3.3.4. 

Once the elements of the decision matrix are calculated, indices of which objects are tasked 
to be observed k 1O

  and the M  sensors tasked to observed them are determined from 

  

sM

i,k 1 i, j ,k 1
j 1

O i : 1  


 
  
 
  (107) 

and 

   i,k 1 i, j ,k 1S j : 1     (108) 

such that the number of indices in i,k 1S M
  . 

3.3.2  Fisher Information Gain 
 

Fisher information takes the form of a matrix representing the amount of information present 
in an unbiased estimator. More specifically, it is used to approximate the lower bound of the 
variance present in an unbiased estimator of some random variable, conditional upon some 
unknown parameter (in these studies, this random variable will be the states x


, and the unknown 

parameter the measurements y


). Through some derivation, it can be shown that the inverse of 

Fisher information provides a lower bound to the variance of the root-squared error of an 
unbiased estimator of x


, which is also known as the Cramer-Rao lower bound [15]. Since the 

Fisher information is the inverse to this lower bound, it follows that if the Fisher information is 
high, the variance in the root-squared error for the estimator of x


 will be low, and hence the 

uncertainty in the estimator will also be low. Given the desire to reduce the overall uncertainty 
on the proposed multi-object tracking problem, Fisher information is a very useful metric in 
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deciding which combinations of measurements from each possible object-sensor pairings will 
produce the largest increase in information (or greatest reduction in uncertainty). 

In terms of probability theory, Fisher information is defined as the expected value (denoted 
as the E operator) of the variance of the score of a random variable, such that 

  
2

E log p x | y
x

         

 
  (109) 

where the Fisher information is given by , and the probability density function of the random 

variable x


 conditional on y


 is given by  p x | y
 

. 

An application of calculating this metric (in matrix form) to an estimator of a nonlinear 
system with additive (and constant) Gaussian process and measurement noise has been presented 
by Ristic [17] as the filtering information matrix, which when using the nomenclature of these 
studies is given by 

   1
* T T 1

i,k 1 i,k 1 i,k 1 i,k i,k 1 ii,,kk 11 k 1 ii,,kk 11
ˆQ E F P E F E H R E H

 
                      

     (110) 

where the matrices i,k 1F 
  and ii,,kk 11H 

  are defined by the Jacobians of the nonlinear state and 

measurement functions evaluated at the true state at time  t k 1 t   . These can be evaluated 

with knowledge of all the M  sensors tasked to observe object i at time step k + 1 in the set 

 i,k 1 1 MS s ,...,s  
   

  
i ,k 1

T
T

i,k 1 x i,k 1F f x
 

   
  (111) 
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M
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T
T
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s ,k 1

i,k 1 x

s ,k 1

s ,k 1
x x

h x, s

h x, s
H

h x, s

h x, s
































 

  
  
  
  
  
     
  
  
  
  
   



 












 (112) 

where 
i ,k 1x 

   refers to applying the differential operator with respect to the current true state 

vector, i,k 1x 
 . The   1

* T
i,k 1 i,k 1 i,k i,k 1

ˆQ E F P E F


        
   portion of Equation 110 represents the 

information obtained from propagation of the system dynamics and covariance, while the 
information gained through observation i,k 1y 

  is 

 T 1
i,k 1 i,k 1 k 1 i,k 1E H R E H

           
    (113) 
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However, no estimator will give an exact analytical representation to i,k 1H 
  since the true 

state i,k 1x 
  is never known, so it will need to be approximated. This approximation could be 

made by calculating the gradient of the truncated Taylor series centered about the forecast 

estimate, f
i,k 1X̂   

 
 
 

d 1
d fO
i,k 1 i,k 1 i,k 1

i,k 1
d 1

ˆH x X
H

d 1 !



  










  (114) 

where the term O is the order of accuracy the particular filter is accurate to (making d the 
particular order of a term in the Taylor series expansion), and  

 

 

 
 

 

1
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2

s ,k 1

2

s ,k 1
d
i,k 1 2

s ,k 1

2

s ,k 1
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































 
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 
  
   
 
 

 
 
 
   

















 (115) 

Since the EKF linearizes the nonlinear measurement function, it is first order accurate and 

therefore for the EKF i,k 1H 
  is derived from Equation 114 

 
 

f
i ,k 1 i ,k 1

i,k 1EKF
i,k 1

i,k 1 ˆx X

h x
H

x
 




 

 
  

   


      (116) 

However, since the UKF’s estimated measurement is accurate to at least second order, and 

sometimes higher [27], it is more difficult to apply Equation 114 to evaluate i,k 1H 
  for the UKF. 

However, another approximation for i,k 1H 
  is made, through investigating the information form 

of the Kalman Filter covariance update equation. Several publications [16, 14, 17, 21] have 
expressed this form when applied specifically to an EKF, but here it will be derived for the 
general case of the Kalman Filter algorithm (i.e. not making any assumptions concerning the 
accuracy of the approximations to the nonlinear measurement function). 

To begin, it is necessary to define the inverse of the Kalman filter covariance update 
equation, which represents an approximation to Equation 110. First, the innovation covariance 

yy
i,k 1P   is defined in general terms as the expected value of the covariance of the estimated 

measurement with respect to the true measurement 
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   Tyy
i,k 1 i,k 1 i,k 1 i,k 1 i,k 1ˆ ˆP E y y y y    

   
 
 

    (117) 

which is rewritten as 

      
     

1T T
f f

i,k 1 i,k 1 i,k 1 i,k 1 i,k 1 i,k 1
yy
i,k 1

1 Tf f
i,k 1 i,k 1 i,k 1 i,k 1 i,k 1 i,k 1

ˆ ˆˆy y x X x X ...
P E

ˆ ˆ ˆ... x X x X y y



     




     

 
    

  
     

  

  
  (118) 

If the expectation operator is distributed, and the inverse exponent factored out, using the 

lemma   1 1 1AB B A
   , Equation 118 is rearranged as 

 

   

   
  

T
f

i,k 1 i,k 1 i,k 1 i,k 1

1
T

yy f f
i,k 1 i,k 1 i,k 1 i,k 1 i,k 1

Tf
i,k 1 i,k 1 i,k 1 i,k 1

ˆˆE y y x X ...

ˆ ˆP E x X x X ...

ˆ ˆ... E x X y y

   



    

   

     

      

   
 

 

 

 

 (119) 

Furthermore, the cross covariance is defined as the expected value of the covariance between 
the state forecast estimate with respect to the true state, and the measurement estimate with 
respect to the true measurement 

    Txy f
i,k 1 i,k 1 i,k 1 i,k 1 i,k 1

ˆ ˆP E x X y y    
   
 
 

 (120) 

Finally the forecast covariance is defined as the expected value of the covariance of the state 
forecast estimate with respect to the true state 

 
   T

f f f
i,k 1 i,k 1 i,k 1 i,k 1 i,k 1

ˆ ˆ ˆP E x X x X    
     
 

 (121) 
When Equations 120 and 121 are applied to Equation 119, the result is 

 

 
  1Tyy xy f xy

i,k 1 i,k 1 i,k 1 i,k 1
ˆP P P P



        (122) 
This method for defining the innovation covariance in terms of the cross covariance and 

forecast covariance is valid for both the EKF and the UKF (and therefore the AEGIS) 
algorithms. By applying Equation 122 to Equations 46 and 49, the covariance update equation is 
redefined as 

  * f f T f T f
i,k 1 i,k 1 i,k 1 i,k 1 i,k 1 i,k 1 i,k 1 i,k 1 i,k 1 i,k 1

ˆ ˆ ˆ ˆ ˆP P P P R P                (123) 

where the matrix i,k 1   is defined by 

  1Txy f
i,k 1 i,k 1 i,k 1

ˆP P


           (124) 
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If the matrix inversion lemma11 is applied to Equation 123, the information form of the 
Kalman Filter covariance update equation is obtained. 

      1 1 1* f T
i,k 1 i,k 1 i,k 1 i,k 1 i,k 1

ˆ ˆP P R 
  

       (125) 

Equation 125 is a Kalman filter-specific approximation for the filter information matrix, 

i,k 1 , given in Equation 110, and therefore an approximation to the Fisher information. 

Additionally, the term   1T
i,k 1 i,k 1 i,k 1R 



    is an approximation for the information gain, i,k 1 , 

given in Equation 113, making i,k 1   also an approximation for i,k 1H 
  presented in Equation 114. 

Therefore, using i,k 1 k 1H    , the Kalman filter information gain matrix is described by 

   1T
i,k 1 i,k 1 i,k 1 i,k 1R 



      (126) 

This same information gain matrix has been referred to as the Fisher information gain 
(abbreviated as FIG in these studies) and has been suggested as a sensor tasking metric in the 
work of Tian, et al. [14] and actually applied to a satellite tracking problem identical to the one 
used in these studies by Erwin, et al. [21]. 

However, the measure of FIG in Equation 126 represents the information gained by taking 
measurements from all sensors tasked to observe one object. For these studies, a calculation of 
FIG must be done of every possible object-sensor pair, and therefore Equation 126 must be 
altered to take this into account. Therefore, to estimate the FIG for each object-sensor pair, 
Equation 124 is reformulated to 

      T 1
xy f

i,k 1i, j ,k 1 i, j ,k 1
ˆP P



 
     (127) 

such that the cross covariance  
xy
i, j ,k 1P   is defined for a specific object i sensor j pair. For an EKF 

this cross covariance is defined by 

    

T
xy f

i,k 1i, j ,k 1 i, j ,k 1
ˆP P H 

     (128) 

where   

 

 
f
i ,k 1

j,k 1

i, j ,k 1

j,k 1
ˆx X

h x,s
xH

h x,s
x













 
   
 

   







. 

Should a UKF be implemented, the cross covariance would be calculated from 

      

2n T
xy p, f f

p i,k 1 i,k 1i, j ,k 1 i, j ,k 1 i, j ,k 1
0

ˆ ˆP W X Y y  



    


         (129) 

with the sigma point measurements and estimated measurement calculated from12 

                                                            

11      11 1 1 1 1 1A BCD A A B C DA B DA
          

12 Note that this is based on using 2n + 1 sigma points. Should a UKF with 2n sigma points be  
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i,k 1 j,k 1
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

 

 
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

  (130) 

and 

    

2n

xi, j ,k 1 i, j ,k 1
0

ŷ W Y 


 



   (131) 

Whether an EKF or UKF is implemented, the resulting information form of the covariance 
update equation for object i based on measurements solely from the sensor j would be (recalling 
Rj,k+1 is defined in Equation 16) 

      1 1 1* f T
(i, j),k 1 j,k 1 (i, j),k 1i, j k 1 i, j k 1

ˆ ˆP P R 
  

          (132) 

with the FIG for that object-sensor pair defined as 

 
1T

(i, j),k 1 (i, j),k 1 j,k 1 (i, j),k 1k 1
R 



   
    

  (133) 

A convenience in defining the object-sensor pair specific FIG in Equation 133 is that it can be 
used to obtain the total FIG for multiple sensors observing object i, as illustrated in the works of 

Erwin et al.[21]. Considering a set of sensors  i,k 1 1 MS s ,...,s  
   whose elements represent a 

sensor index j, Equation 125 is modified to 

        jj j

M1 1
* f T 1
i,k 1 i,k 1 s ,k 1i,s ,k 1 i,s ,k 1

j 1

ˆ ˆP P R   
 

  
   



   (134) 

Therefore, there exists a direct linear relationship between the FIG and the amount of 
information gained on a particular object, leading to a linear programming problem identical to 

that in the work of Erwin et al. [21] which seeks to find the binary variables  i,k ,k  which 

maximize 

    

s sN M

i, j ,k 1 i, j ,k 1
i 1 j 1

  
 
  (135) 

subject to the constraints outlined in Equation 106. This constrained maximization problem 
represents a linear programming problem and can be solved using a simplex method [61]. 
However, a problem arises in that FIG is computed as a matrix, and must be converted to a scalar 
for each object-sensor pair in order to solve Equation 135. The two intuitive choices for this 
scalar metric would be to either take the trace or the determinant of the FIG in Equation 133. In 
these studies, the trace will be used such that the elements of the visibility matrix are chosen as   

   i, j ,k 1 i, j ,k 1   , where 
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   
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 
i , j ,k 1 i , j ,k 1 i , j ,k 1

T 1 a a
j,k 1 k 1 i,k 1trace R , i, j O ,S  
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

  
           

 (136) 

In this case, the trace is used over the determinant, because the determinant of the FIG matrix 
in Equation 133 will always be zero for an EKF, as illustrated by the simple example in 
Appendix A. Using the trace is not without consequence, since it has no physical meaning to the 
problem because the units across diagonal elements of the FIG matrix are not equal (due to the 
position and velocity related components of the FIG matrix). This inconvenience could be 
alleviated by either normalizing the diagonal components of the FIG matrix, or converting the 
matrix to canonical (unitless) dimensions, but this would in fact only change the scaling of 
elements in the matrix. The proper scaling between position and velocity information 
components would be a topic for further investigation, and more applicable to an investigation of 
the best practices for using an FIG-based tasking strategy applied to a satellite tracking problem. 
However, in the case of these studies, simply using the trace suffices to show trends in the 
coupling effect between the filters and the FIG matrix. 

Thus, this tasking metric drives sensor allocation to provide the largest single-step increase in 
information to the collection of objects being tracked. Additionally, since this metric reflects an 
instantaneous benefit of taking a measurement on a certain object, without regard to future 
predictions of an object’s uncertainty or knowledge of its dynamics, it can be viewed as a greedy 
or myopic form of tasking. 

3.3.2.1		Calculating	FIG	for	an	EKF	
 

By applying Equation (127) to Equation (126), the result is 

    
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 
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 

  
 
 

     
 
 

   (137) 

which if applied to Equation (136) results in a metric whose calculation depends only on the 
objects prediction step estimate location with respect to the sensor location, and the sensor noise 
covariance (which for these studies is constant for each sensor). This is an important observation, 
since it will become a factor in performance discrepancies between the EKF, and the 
UKF/AEGIS filters described in Section 5. Furthermore, this illustrates a direct consequence the 
EKF linearizations (in this case, the linearization of the nonlinear measurement function) have on 
the evaluation of the FIG metric. 

3.3.2.2		Calculating	FIG	for	a	UKF	
 

By applying Equation (129) to Equation (124), the result is 
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  

   

 

TT2n f , f
p i,k 1 i,k 1 i, j ,k 1 i, j ,k 10

i, j ,k 1 1T2n f , f f , f
p i,k 1 i,k 1 i,k 1 i,k 1 i,k0

ˆˆ ˆW X Y y ...

ˆ ˆˆ ˆ... W X X Q

  


  





 

   

 

   

          
         




  (138) 

where the sigma point weights, pW  are defined in Equations 54 and 56. If Equation 138 is 

applied to Equation 136 results in a metric that is a function of the distribution of sigma points as 
well as the constant sensor noise. In particular, both the distribution of the sigma points in the 
prediction step, and their transformation into measurement space will factor into the calculation 

of  i, j ,k 1   and therefore  i, j ,k 1  . The evaluation of the FIG metric using a UKF differs 

significantly from that of an EKF, despite the fact that they represent the same quantity (that is a 
scalar evaluation of information gained from taking a measurement) for each filter. 

3.3.2.3		Calculating	FIG	for	an	AEGIS	filter	
 

Unlike the EKF or UKF, the PDF describing the AEGIS filter is not a single Gaussian PDF, 
but rather a collection of weighted Gaussian PDFs resulting in a GMM PDF. The FIG could be 
calculated by taking the inverse of Equation 78, splitting it into components of information 
gained through propagation and information gained through measurement in the same manner as 
Equation 124. However, this is not possible due to the fact that evaluation of Equation78 requires 

an updated state estimate for each l GMM component *,l
i,k 1X̂  . In order to calculate this state 

estimate for each GMM component via Equation 102, an actual measurement vector i,k 1y 


 would 

be impossible to obtain before any tasking decisions have been made. Therefore, any evaluation 
of FIG based on an object/sensor pair will have to be evaluated as an approximation to the true 
FIG.  

This approximation is achieved by calculating a weighted average state and covariance 
estimates at the beginning of a time step via Equations 77 - 78, and applying a UKF forecast and 

update step to calculate (i, j),k 1   using a UKF strategy. This is the equivalent of calculating the 

UKF FIG of a single component GMM (which may approximate a multi-component GMM), and 
does not require measurements actually be taken as it would for the same calculation using a 
multi-component GMM. 

Therefore, starting with the weighted average state and covariance estimates *,gmm
i,kX̂  and 

*,gmm
i,kP̂  2n sigma points are drawn from 

    
f ,gmm f ,gmm CH,gmm CH,gmm
i,k i,k n 1 i,k i,k1 2n

ˆ ˆ ˆX 1 n 0 P P 
        (139) 

where 
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T

CH,gmm CH,gmm *,gmm
i,k i,k i,k

ˆ ˆ ˆP P P         (140) 

Sigma points are propagated in the same way as for the UKF described in Section 3.2.4 to obtain 

the forecast state  f ,gmm
i,k 1X̂   and covariance estimates,  f ,gmm

i,k 1P̂  . Next, the object-sensor cross 

covariance is calculated by 

  
   

2n 1 T
xy,gmm f ,gmm, f ,gmm gmm, gmm
(i, j),k 1 p i,k 1 i,k 1 i, j ,k 1 i, j ,k 1

0

ˆˆ ˆP W X Y y  






    


           (141) 

where the sigma point measurements are 

  

 
 

f ,gmm,
i,k 1 j,k 1gmm,

i, j ,k 1 f ,gmm,
i,k 1 j,k 1

ˆh , s
Y , 0,...,2n 1

ˆh , s












 



 

 
   
  



    (142) 

the estimated measurement is 

 
2n 1

gmm gmm,
(i, j),k 1 x (i, j),k 1

0

ŷ W Y 





 


       (143) 

and the sigma point weights are defined in Equation 87. Finally, xy,gmm
(i, j),k 1P   and f ,gmm

(i, j),k 1P̂   are applied 

to Equation 126 to get  i, j ,k 1  , which is then used in Equation 136 to obtain the approximate FIG 

for an AEGIS filter.  

3.3.3  Shannon Information Gain 
 

Defined as a scalar measure of information about the state of a system (applied here as a 
relative gain between a prior and posterior distribution), Shannon information is used in a similar 
manner to Fisher information as a utility metric for a sensor tasking problem. The primary 
difference between the two is that the SIG is normalized and represents a relative gain in 
information, while the FIG is an absolute gain. Utilizing the SIG as a tasking utility metric would 
therefore drive tasking decisions to observe objects which have the largest gain in information 
relative to where they were before observation while the FIG would task based on the maximum 
total gain of information. As follows is a brief description of how SIG is calculated, and how it is 
used within a single-step dynamic programming problem to determine tasking decisions. 

To begin, the Shannon information originates from the definition of Shannon entropy, which 
measures chaos or disorder about the state of a system. Originally created to give a mathematical 
foundation to signal processing problems [62], entropy measures have been extended to 
applications in problems involving uncertainty measurements in statistical mechanics. For a 
differential system, the Shannon entropy is defined in Equation 79. When assuming the PDF 
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 p x


 is a Gaussian distribution  g * *
i,k i,k i,k

ˆ ˆp x ;X , P


 for object i at time step k defined by Equation 

19, the result is 

      g * * g * *
i,k i,k i,k i,k i,k i,k i,k i,k

ˆ ˆ ˆ ˆx p x ;X , P log p x ;X , P dx 
   

H  (144) 

Shannon conjectures the similarities between this measure of entropy and the concept of 
information, in that the Shannon information was defined as the negative Shannon entropy13 

      g * * g * *
i,k i,k i,k i,k i,k i,k i,k i,k

ˆ ˆ ˆ ˆI x p x ;X , P log p x ;X , P dx 
   

 (145) 

By the definition that the expected value of a random variable x is  E(x) xf x dx  , 

Equation 144 becomes 

     g *
i,k i,k i,k i,k

ˆ ˆI x E log p x ;X , P
 

 (146) 

Evaluating the natural logarithm of  g *
i,k i,k i,k

ˆ ˆp x ;X , P


 yields 

       1T
* * * *

i,k i,k i,k i,k i,k i,k i,k

1 ˆ ˆ ˆ ˆI x E log | 2 P | trace x X x X P
2


            

  
 (147) 

If the expected value operator is distributed, the result is 

    1* * *
i,k i,k i,k i,k

1 ˆ ˆ ˆI x E log | 2 P | trace P P
2


          


 (148) 

which leads to the final form of Shannon information for a Gaussian PDF 

   *
i,k i,k

1 ˆI x log | 2 P |
2

 


 (149) 

The Shannon information gain (SIG) is based on an evaluation of the information gained through 
observation from an a priori and a posteriori distribution as presented by several previous works. 
[13, 64, 65]. In this case, SIG is defined mathematically as the difference in Shannon information 
between the state at the forecast step (before observation) and the update step (after observation) 

 n * n f
i,k i,k 1 i,k 1

1 1ˆ ˆI log | 2 e P | log | 2 e P |
2 2

  
      
 

 (150) 

which is simplified to 

 
f
i,k 1

i,k 1 *
i,k 1

ˆ| P |1
I log ˆ2 | P |






   (151) 

When utilizing a Kalman filter while tracking Ns objects using Ms sensors, Equation 151 for 
a particular object i observed by a sensor j at a time-step k + 1 can be revised to become 

                                                            
13 Several notions between entropy and information, including that made by Shannon can be 

found in the work of Skagerstam [63] 
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  
 

f
i,k 1

i, j ,k 1 *
i, j ,k 1

ˆ| P |1
I log

ˆ2 | P |





   (152) 

where calculating  
*
i, j ,k 1P̂   for a specific object-sensor pair is defined as 

          
* f yy T

j,k 1i, j ,k 1 i, j ,k 1 i, j ,k 1 i, j ,k 1 i, j ,k 1
ˆ ˆP P K P R K    

      (153) 

In Equation 153, the Kalman gain matrix is calculated from 

     1xy yy
(i, j),k 1 (i, j),k 1 j,k 1i, j ,k 1K P P R



      (154) 

where the object-sensor specific innovation covariance is defined using the cross covariance 
(derivation in Section 3.3.2) from 

   1Tyy xy f xy
(i, j),k 1 (i, j),k 1 i,k 1 (i, j),k 1

ˆP P P P


        (155) 

with the object-sensor specific cross covariance defined for an EKF by Equations 127 - 128 and 
for a UKF by Equations 129 - 131. Therefore, for the purposes of using SIG as a tasking metric 

the elements of the visibility matrix are chosen as       a a
k 1 i,k 1i, j ,k 1 i, j ,k 1I i, j O ,S           . 

However, a linear relationship between the total amount of SIG gained over all objects tasked for 
observation and the individual SIG for each of those tasked object-sensor pairs does not exist 
like it does for FIG, as illustrated by Equation 134. In fact, the SIG calculated for an object-
sensor pair will change each time the objects state changed (whether by propagation or by being 
observed by a sensor). That is, the addition of individual SIGs for an object and the M  sensors 
tasked to observe it is not equal to the total SIG of that object based on the observation of its M  
sensors tasked to observe it. Due to this, a solution to the decision matrix cannot be evaluated as 
a linear programming program as was the case with using FIG. 

To formulate this decision making process, at each time-step a total possible SIG for each 

object (based on observations by all M  sensors tasked to observe it  i,k 1 1 MS s ,...,s  
  , and 

assuming only one observation is possible per sensor) is calculated from Equation 151. This total 
SIG can also be broken down into a summation of iterative information gains from each sensor 
observing that object, due to the additive property of Shannon information [10]. Therefore, a 
total measure of the SIG can be redefined as 

     1 j 1 1

M 1

i,k 1 i,s ,k 1 i, s ,...,s ,k 1
j 1

I I I  




  


      (156) 

where   j 1 1i, s ,...,s ,k 1
I  

 
  represents the SIG between object i and sensor j 1j s  based on 

observations from other sensors  j 1j s ,...,s 
  tasked to observe that object. This individual SIG 

within the summation operator in Equation 156 is calculated from14 

                                                            
14 Should  i,k 1 i, j ,k 1M 1, I I 

      
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   
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j 1

j 1 1

j 1 1

*

i, s ,...,s ,k 1

*i, s ,...,s ,k 1

i, s ,...,s ,k 1

ˆ| P |
1

I log , M 1ˆ2 | P |

 

 

 












    (157) 

where   j 1

*

i, s ,...,s ,k 1
P̂  

 
 is the covariance estimate of object i based on the sensors,  j 1j s ,...,s 

  

observing it15 . To calculate this covariance estimate, a similar approach to the methods in 
Equations 49 and 153 are used, except that this new covariance estimate reflects an estimate 

based on only a portion of the sensors in i,k 1S
  (unlike Equation 49 which includes all sensors in 

i,k 1S
  or Equation 153 which includes only one sensor).  This estimate is evaluated as 

               j 1 j 1 1 j 1 1 j 1 1 j 1 1

* f yy T
i,k 1i, s ,...,s ,k 1 i, s ,...,s ,k 1 i, s ,...,s ,k 1 i, s ,...,s ,k 1 i, s ,...,s ,k 1

ˆ ˆP P K P R K         
       

    

     
 (158) 

In Equation 158, the Kalman gain matrix is calculated from 

             
j 1 1 j 1 j 1 1 j 1 1

1
xy yy

i, s ,...,s ,k 1 i, s ,...,s ,k 1 i, s ,...,s ,k 1 i, s ,...,s ,k 1
K P P R       

     



   
    (159) 

where the innovation covariance is defined using the cross covariance 

           j 1 j 1 1 j 1 1

T
1

yy xy f xy
i,k 1i, s ,...,s ,k 1 i, s ,...,s ,k 1 i, s ,...,s ,k 1

ˆP P P P     
   



  

    
   (160) 

and the sensor noise covariance matrix for the sensors  j 1j s ,...,s 
  is 
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 

 





 

 

  (161) 

Should an EKF be used, the cross covariance is calculated by 

                                                            
15 Likewise   j 1 1

*

i, s ,...,s ,k 1
P̂  

 
 is the covariance estimate of object i based on the sensors  j 1j s ,...,s 

  
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    (162) 

with 
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    (163) 

If a UKF is implemented, this cross covariance is calculated by16 

         j 1 j 1 1 j 1 1

T
2nxy f , f
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  (164) 

where 
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
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   (165) 

is used to calculate the estimated measurement  

      j 1 1 j 1 1

2n

xi, s ,...,s ,k 1 i, s ,...,s ,k 1
0

ŷ W Y   
 

   


       (166) 

                                                            
16  Note, this is based on a 2n + 1 sigma point distribution, and can easily be modified to 
incorporate a 2n sigma point case, such as in the AEGIS filter 
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An interesting property of Equation 156 is that so long as two sets  j 1s ,...,s 
  utilize the exact 

same sensor, the particular order in which the updated posteriors (or the items in Equation 156) 
occur is irrelevant. This means that for some given set of predetermined sensors, the order in 
which the gain in SIG is calculated to determine the value for Equation 156 will not alter the 
final value, and can be proven from17 
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 
   
  

 (167) 

Given these properties, an optimal tasking decision process is chosen so that with an initial input 
reflecting the SIG present in each possible object sensor pair, the visibility matrix is calculated 

such that the elements   a a
(i, j),k 1 (i, j),k 1 k 1 i,k 1I i, j O ,S          . This decision process selects the 

binary variables j
i,k 1   that maximizes the total instantaneous SIG across all objects observed 

 
sN

TOT
k 1 i,k 1

i 1

I I 


    (168) 

while maintaining the constraints presented in Equation 106. 
The solution to Equation 168 represents the solution to a dynamic programming problem, 

due to the fact that after the selection of a sensor to observe a particular object, the SIG for that 
object based on the remaining sensors (should more than one sensor be available to this object) 
will need to be recalculated due to the change in the PDF resulting from that observation. This 
fact, coupled with the memoryless properties of the individual SIGs (i.e. the calculation of the 
SIG only depends on the current PDF in the sequence and not previous ones) define the 
calculation of total SIG in Equation 166 to be a Markov chain. While many dynamic 
programming problems require difficult and computationally expensive solutions processes, the 
fact that the total SIG calculated for an object is a Markov chain, it can be shown that the 
solution to this optimization problem is very straightforward. 

To illustrate this optimal process, a brief example is illustrated. First, assume that there exist 
M = 1 sensors to observe N = 4 objects, A → D, such that the visibility matrix for this case 
would be 

        k 1 A,1 ,k 1 B,1 ,k 1 C,1 ,k 1 D,1 ,k 1I I I I     
        (169) 

                                                            
17 Understanding that   M 1

* *
i,k 1i, s ,...,s ,k 1

ˆ ˆP P 
 

  
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where for this example,        A,1 ,k 1 B,1 ,k 1 C,1 ,k 1 D,1 ,k 1I I I I          .  Obviously, given that only 

one decision exists (due to the one object per sensor constraint) the optimal decision is that 

 A,k 1S 1
   and  B,k 1 C,k 1 D,k 1S S S 0  

     . 

Adding an additional degree of complexity, assume another sensor is added to the previous 
example, such that now M = 2. Assume that the SIG for each object-sensor pair in Equation 169 
remains unchanged, but now an additional row for the Shannon information based on 
observations by the second sensor is added, such that the visibility matrix is now 

 
       

       

A,1 ,k 1 B,1 ,k 1 C,1 ,k 1 D,1 ,k 1

k 1

A,2 ,k 1 B,2 ,k 1 C,2 ,k 1 D,2 ,k 1

I I I I

I I I I


   


   

    
  

     
 (170) 

Due to the increased dimensionality of this new visibility matrix, the complexity will 
increase in determining the correct sensor decisions to maximize Equation 168. Assume that 

   A,1 ,k 1 A,2,1 ,k 1I I    , and focus on object A, from Equations 156 and 167, it follows that the 

maximum possible SIG obtainable for object A is 

          A,k 1 A,1 ,k 1 A,2 ,k 1A, 2,1 ,k 1 A, 1,2 ,k 1
I I I I I   

          (171) 

From Equation 171 and the given property that    A,1 ,k 1 A,2 ,k 1I I    , then 

      A, 1,2 ,k 1 A, 2,1 ,k 1
I I

 
        (172) 

Additionally, the work of Aughenbaugh et al.[13] illustrates that the individual SIGs in 
Equation 157 are equal to the Kullback-Lieber divergence between the prior and posterior 
distributions. The Kullback-Leiber divergence, which represents the mutual information between 
the state before and after a particular observation occurs, was derived by Hershey et al. [66] for 
Gaussian posterior and prior distributions as (modifying the original equation to incorporate a 
forecast step prior and update step posterior defined in the nomenclature of these studies) 

 

    
   

g * g *
KL i,k 1 i,k 1 i,k 1 i,k 1 i,k 1 i,k 1

f
T1 1

i,k 1 f * * f f * f
i,k i,k 1 i,k 1 i,k 1 i,k i,k 1 i,k 1*

i,k 1

ˆ ˆ ˆ ˆD p x ;X , P ,p x ;X , P

ˆ| P |1 1 1 nˆ ˆ ˆ ˆ ˆ ˆ ˆlog trace P P X X P X X
ˆ2 2 2 2| P |

     

 
    





              

 

 (173) 

Aughenbaugh applied this calculation of the Kullback-Leibler divergence to a Kalman filter 

algorithm, where the posterior covariance is independent of the measurement i,k 1y 


, to find that 

in this particular case 

     
f

g * g * i,k 1
KL i,k 1 i,k 1 i,k 1 i,k 1 i,k 1 i,k 1 *

i,k 1

ˆ| P |1ˆ ˆ ˆ ˆD p x ;X , P ,p x ;X , P log ˆ2 | P |


     



 

 (174) 

Therefore, the SIG calculated in these studies is in fact equivalent to the mutual information 
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between a prior and posterior distribution,  i,k 1 i,k 1 i,k 1I x ;y    
  18 [64]. This fact, coupled with 

the definition of the total SIG calculation in Equation 156 being a Markov chain can be used 

within the data processing inequality to show that      
1j 1

i,k 1 i,k 1 i,s ,k 1i, s ,...,s ,k 1
I x ;y I x ;y j 1 


  

     
 
   

 

[15]. 
Using the nomenclature of the current example, this implies that 

 
    

    

A,1 ,k 1 A, 1,2 ,k 1

A,2 ,k 1 A, 2,1 ,k 1

I I

I I

 

 

  

  
 (175) 

This inequality could easily be expanded to more than 2 sensors with the same results, 
translating to a general form of 

     M 1
Mi, j ,k 1 i, s ,...,s ,k 1

I I , for j s and 2 M 



 

      (176) 

which would be valid for any set of sensors a
i,k 1 i,k 1S S

   where Mj s  . In a general description, 

Equation 176 states that the SIG between an object i and sensor j is always greater than or equal 
to the SIG between object i and sensor j conditional on observations from any additional sensors. 

However, this inequality can be expanded due to the fact that    A,1 ,k 1 A,2 ,k 1I I    , implying that 

if 

    max maxi, j ,k 1 i, j ,k 1I I , j j       (177) 

then 

     max M 1
i, j ,k 1 i, s ,...,s ,k 1

I I , 2 M 


 
     (178) 

and is valid for all a
i,k 1 i,k 1S S

  . In Equation 178, jmax represents the sensor j associated with the 

highest single-sensor SIG for some object i, such that 

 max (i, j),k 1
j

j max I    (179) 

The inequality presented in Equations 177 - 178 can also be expanded to the current sensor 

tasking example, when taking into account the SIG present in each object-sensor pair in k 1  . 

That is, using the same analysis methods applied previously, it can be shown that if 

        
max max max maxi , j ,k 1 i, j ,k 1I I , i, j i , j       (180) 

then 

     max max M 1
i , j ,k 1 i, s ,...,s ,k 1

I I , 2 M 


 
     (181) 

                                                            
18   i,k 1I x ;


�  could represent a mutual information, or a conditional mutual information based on 

how many sensors have already been tasked to observe object i in a particular instant of time. 
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for all a
i,k 1 i,k 1S S

   and all a
k 1 k 1O O
  . In Equation 181, [imax; jmax] represents the object-sensor 

pair associated with the highest single-sensor SIG, such that imax and jmax are calculated from 

  max max (i, j),k 1
i, j

i , j max I    (182) 

The inequality presented in Equations 180 - 181 is fundamental in the solution to the 

dynamic programming problem that finds the set of objects k 1O
  and sensors observing those 

objects i,k 1S
   (and therefore finding the elements  i, j ,k 1  ) which maximize Equation 168. This is 

because Equations 180 - 181 state that as long as at each tasking decision the object-sensor pair 
corresponding to the highest value of SIG available for all feasible object-sensor pairs is 
selected, then no other sequence of tasking decisions will produce a greater value of Equation 
168. 

Therefore, in the current example, if    A,1 ,k 1 A,1 ,k 1I     is the entry in k 1   with the greatest 

magnitude, then first tasking decision should be that sensor 1 observes object A, making 

 A,1 ,k 1 1   . Since after this point the estimation state (in this case the covariance) of object A 

will be altered, the next step would be to recalculate     A,2 ,k 1 A, 2,1 ,k 1
I  

   so it reflects the 

current updated SIG present in the object A - sensor 2 pair. Furthermore, since sensor 1 would no 

longer be available to make any observations, setting    A,1 ,k 1 D,1 ,k 1 0     would ensure that 

no other decisions could be made to select sensor 1 for another observation. Implementing these 
changes, for the next decision sequence the visibility matrix would be changed to 

 
        

k 1
B,2 ,k 1 C,2 ,k 1 D,2 ,k 1A, 2,1 ,k 1

0 0 0 0

I I I I
 

  

 
       

 (183) 

which has the easy decision of selecting the object with the highest SIG (the same as in the first 
example), whichever object that may be. Assuming that 

        B,2 ,k 1 C,2 ,k 1 D,1 ,k 1 A, 2,1 ,k 1
I I I I   

        the next decision would be to have sensor 2 observe 

object B, which would result in a decision matrix of 

 k 1

1 0 0 0

0 1 0 0
 

 
  
 

 (184) 

In this example, the set of objects to be observed would be  k 1O A, B
   and the sets of sensors 

observing each object would be      A,k 1 B,k 1 C,k 1 D,k 1S 1 , S 2 , and S S 0   
       . Therefore, the 

optimal decision process illustrated in the above examples can be expended to a case with Ms 
sensors and Ns objects, to be embedded within a Kalman filter algorithm after the forecast step 

and before the update step. This decision process would simply initiate 
s sk 1 N M0    and given 

k 1   would  
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 Identify the object-sensor pair [imax; jmax] with largest  i, j ,k 1   

 Set  max maxi , j ,k 1 1   

 Set  maxi, j ,k 1 0 i    

 If  
s sk 1 N M0   recalculate   max max,...

maxi , j, j ,k 1
I j j


    and repeat above steps, otherwise 

the decision process is complete  

3.3.3.1		Calculating	SIG	for	an	EKF	
 

The process for calculating the SIG is very straightforward for an EKF. Given a forecast 

estimate f
i,k 1P̂  , an update covariance estimate for object i and sensor j is calculated using 

Equation 153. These estimates are used in Equation 152 to calculate the initial SIG for the object 
i sensor j pair. Should object i be tasked for observation by sensor j and its SIG need to be 
recalculated as part of the decision process, the new SIG for object i and a new sensor j  (where 

the original sensor to task object i is represented by 1j s ) is calculated from 

   
 

  

1

1

1

*

i,s ,k 1

*i, j ,s ,k 1

i, j ,s ,k 1

ˆ| P |1
I log

ˆ2 | P |









 
 

   (185) 

where   1

*

i, j ,s ,k 1
P̂  

 is calculated using Equation 158. 

3.3.3.2		Calculating	SIG	for	a	UKF	
 

The process for calculating the SIG for a UKF is very similar to that of an EKF. Given a 

forecast estimate f
i,k 1P̂  , an update covariance estimate for object i and sensor j is calculated using 

Equation 153. These estimates are used in Equation 152 to calculate the initial SIG for the object 
i sensor j pair. Should object i be tasked for observation by sensor j and its SIG need to be 
recalculated as part of the decision process, the new SIG for object i and a new sensor j  (where 

the original sensor to task object i is represented by 1j s ) is calculated from Equation 185 

where   1

*

i, j ,s ,k 1
P̂  

is calculated using Equation 158.  

3.3.3.3		Calculating	SIG	for	the	AEGIS		filter	
 

The process for calculating the SIG for an AEGIS filter is similar to the FIG, in that it is an 
approximation, since no closed loop solution exists. Given that there is no way to take a 
measurement before tasking decisions have been made, any tasking utility metric cannot be 
based upon knowledge of a measurement, and therefore calculating SIG cannot be done for a 
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GMM using the methods presented in this section. However, like the FIG, if during the tasking 
process, the multi-component GMM is reduced to a single Gaussian PDF (with one state and 
covariance estimate), a traditional UKF calculation method is implemented to gain an 
approximation for the SIG.  

Given state  f ,gmm
i,kX̂    and covariance  f ,gmm

i,kP̂   estimates calculated using Equations 77 - 78 

sigma points are distributed using Equation 139 to obtain f ,gmm
i,k . These sigma points are 

propagated through the nonlinear dynamics, and forecast estimates are obtained using Equations 
53 and 55. Additionally, Equations 141 - 143 are used to gain the cross covariance, measurement 
sigma points, and estimated measurement, while the innovation covariance is calculated from 
Equation 155. These are applied to Equations 153 - 154 to obtain the Kalman gain and 

covariance updates, which are inputted into Equation 152 (using the approximation f ,gmm f
i,k 1 i,k 1

ˆ ˆP P 

) to gain the SIG for object i and sensor j. 
Should object i be tasked for observation by sensor j and its SIG need to be recalculated as 

part of the decision process, the new SIG for object i and a new sensor j  (where the original 

sensor to task object i is represented by 1j s ) is calculated from Equation 185 where   1

*

i, j ,s ,k 1
P̂  

 

is calculated using Equation 158. The application of Equation 158 for an AEGIS filter uses the 
same equations as for application with a UKF, except the number of sigma points are changed 
from 2n + 1 to 2n, and sigma point weights are calculated using Equation 87. 

3.3.4  Lyapunov Exponent Metrics 
 

While metrics involving information theory give insights concerning the reduction of 
uncertainty within a particular measurement of an object, their single-step myopic application in 
these studies may result in little to no observations of objects having low values of FIG or SIG 
with respect other observable objects. This could lead to a particular object not being observed 
for long periods of time, possibly leading to divergence in its uncertainty to the extent of the 
object becoming unable to monitor. Given that divergence is inherently tied into stability for 
dynamic systems, it follows that some method of assessing the stability of the estimation error 
and/or uncertainty may also provide a valuable tasking metric to examine. In modern nonlinear 
control theory, as well as data analysis, the concept of assessing the stability of a dynamic system 
has been thoroughly studied through methods of Lyapunov stability analysis, including 
Lyapunov’s direct method [67]. For time-series of data, these methods include an approach 
called largest Lyapunov exponent estimation [10] (LLE), commonly performed in applications 
containing collections of stochastic data. 

The motivation to consider a tasking metric based on Lyapunov exponents is due to the non-
predictive nature of the myopic single time step FIG and SIG-based metrics. Lyapunov 
exponents, while difficult to calculate in the absence of substantial data, could prove to be a 
suitable metric for this purpose. Lyapunov exponents provide insight into the stability a 
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dynamical system by calculating a series of exponents known as a Lyapunov spectrum which 
reflects the extent of divergence between the trajectories of two or more neighboring points in 
state space. More specifically, they are a measurement of exponential divergence of two possible 
points propagated through state-space dynamics over an infinite time in which a Lyapunov 
exponent exists for every state dimension in the system. Within the Lyapunov spectrum, the 
largest Lyapunov exponent has the greatest magnitude, and in many cases when system 
dynamics cannot be modeled analytically, the calculation of the largest exponent can serve as an 
approximation to the spectrum.[10] 

Mathematically, for two data points at some time t, x1,t and x2,t, having a distance 

1,t 2,t tx x 1   , which when measured after some time Δt will have a distance 

1,t t 2,t t t tx x     , a Lyapunov exponent can be approximated with 

 t
t t te

  
   (186) 

Therefore, for a value of 0   the points are converging, if 0   the points are diverging 
(to varying extents, with 1   representing exponentially fast divergence), and if     the data 
is pure chaos (noise). Additionally, the sum of the Lyapunov exponents has the same property, in 

that if their summation 
n (m)

m 1


 is greater than zero, the system is unstable.  

Various methods exist in determining these Lyapunov exponents, including estimating the 
entire spectrum based on a deterministic system model, or estimating only the largest exponent 
based on a time series of data [37, 68, 69, 70]. Should system dynamics be modeled 
deterministically, for example, via a state transition matrix like that in Equation 4, the spectrum 
of exponents is calculated from time-steps k 0 k K   by 

     m m
i i,KK

1
lim ln L

2K
 




 (187) 

where 

      
TK K

m m m
i,K i i,k|k 1 i,k|k 1 i

k 0 k 0
L u u

 

  
 

        
   

 
 (188) 

represents a system of linear equations in the coefficients of  m
iu


, making  m
i,KL   and eigenvalue. 

Furthermore, the sum of these exponents is calculated to give an indication of the instability of 
each of the orbits of the various simulated objects. This calculation is done, starting with the 
initial estimates of each object and propagating Equations 2 and 5 forward to some terminal time 
step K. This method of calculating the entire spectrum could be applied to the satellite equations 
of motion to give an indication of which objects would be subject to the greatest state space 
instability. However, while the stability of a satellites equations of motion may give an indication 
of which satellites should be observed the most, it does not incorporate any relation to 
estimation, and is therefore not considered for these studies. 

However, if a deterministic model does not exist for the system (such as in a stochastic time 
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series of data produced by a filter) Lyapunov exponents can be estimated by examining 
exponential divergence in a time series of data. As time between updates (or observations) of an 
object increase, its estimation error may also increase, if not diverge drastically should this time 
be large. The extent of this divergence will be related to how the actual state and the estimated 
state separate over time, as reflected by the propagation of the covariance estimate. Using both 
an EKF and UKF, this propagation of covariance is based upon the modeling of the object 
dynamics, such that if the dynamics dictates that two close initial states will diverge when 
propagated through the equations of motion, the hyper volume of the covariance estimate should 
diverge in kind. Since this hypervolume is related to the extent of uncertainty (or error) in the 
state estimate, a diverging covariance could therefore be linked to a diverging estimation error, 
and furthermore to the divergence of two points in the system (the true state and the estimated 
state). Thus, estimating the Lyapunov exponents of the estimation error may help give an 
indication as to which objects will have the greatest tendency towards these diverging estimation 
errors. 

An illustration of how these estimation errors may diverge over time in the absence of 
observations (in this case, reflected by the relative distance between two objects with very close 
initial conditions) for a low Earth orbit (LEO), medium Earth orbit (MEO) and geosynchronous 
Earth orbit (GEO) orbit is seen in Figure 12. In this figure, it is observed that the two initially 
close LEO orbits have the greatest final separation while the GEO orbits have the least, 
indicating that when calculating Lyapunov exponents for each of these orbits, the size and shape 
of the orbit should in part dictate the divergence of the estimation error. The larger displacements 
for the LEO orbit also indicates that a small estimation error for a LEO object will turn into a 
large error at a quicker rate than a GEO object, and therefore a LEO object should theoretically 
be observed more frequently in a sensor schedule than a GEO object. 
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Figure 12. Plots of the propagation of displacement between two initially close LEO, MEO and 
GEO orbits. 
 

While no deterministic system exists for the calculation of the Lyapunov spectrum, the work 
of Wolf et al. [37] provided a convenient framework for calculating this largest Lyapunov 

exponent from experimental data, through a fixed evolution time program for 1 

 
kt t

1 i,k 1
i,k 1 2

k 0k 1 0 i,k

D1
log

t t D






 




   (189) 

where the term i,kD   refers to the distance (in a Euclidean sense) between a point on a reference 

trajectory (a trajectory in state space to measure divergence with respect to) and its closest data 

point at time kt k t   , while i,k 1D   is the propagation of that distance to the time 

 k 1t k 1 t    . In this formulation, the closest data point must be determined at each time step. 

Equation 189 is reformulated for these studies to account for the constant time increments of Δt 
when measurements are possible (but not necessarily taken), and objects are indexed by the 
subscript i. Additionally, for these studies, t0 reflects the initial time of the simulation, which will 

always be defined by 0t 0 . 

Using this as a benchmark, Rauf et al. [38] determined how an effective Lyapunov exponent 

eff  could be determined from a nonlinear adaptive filter utilizing the root mean square (RMS) 

error determined from the filters estimates. This process essentially modifies Equation 186 such 

that the distance measurements t t   and t  are given from the RMS error RMS
TE  and RMS

0E  

between some initial time t0 and final time tf , for the purpose of calculating an estimate to 
1

eff  . 

For these studies, this approach of using the RMS error as the distance measurements to 

estimate the largest Lyapunov exponent is applied to Equation 189 such that RMS
i,k i,kD E    and 

RMS
i,k 1 i,k 1D E    . This suggested process could be viewed as applying Equation 189 to a single-
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point data set to yield a very basic estimate for the largest Lyapunov exponent 

 
k RMS RMSl l

1 i,k 1 i,k 1
i,k 1 2 2RMS RMS

kk 1 i,k k 1 i,0

E E1 1ˆ log log
t E t E



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   (190) 

Furthermore, since the  filters used in these problems provide covariance estimates at the 

time when tasking occurs (the prediction step) f
i,k 1P̂  , an estimate for the RMS error of a 

particular objects state estimate at a particular time step k + 1 can be calculated from 

 RMS f
i,k 1 i,k 1

ˆE trace P  , and from an initial time step k = 0 by  RMS f
i,0 i,0

ˆE trace P . Through 

application of these calculations for the estimated RMS error, Equation 190 becomes 

 
 
 

f
i,k 11

i,k 1 2
*

k 1 i,0

ˆtrace P1ˆ log
t ˆtrace P







  (191) 

Of particular note in regards to Equation 191 is that it represents a way to determine the 
estimation error stability of a particular object in the proposed tracking problem, which was 
motivated by concepts of Lyapunov exponent estimation. However, due to the fact that it is 
merely an approximation, and that Lyapunov exponents are typically calculated using very large 
data sets (and this method is only using the time history of one data point), these methods should 
be viewed as providing a useful utility metric for tasking rather than a competitive method for 
accurately determining a largest Lyapunov exponent. 

An additional convenience in using Equation 191 is that is can be positive or negative, 
depending on how the uncertainty has increased or decreased over the entire simulation. This 

allows for objects with consistent covariance estimates to have near zero-mean values for 1
i,k 1̂  , 

and objects whose covariances are decreasing to have negative values of 1
i,k 1̂  . However, due to 

the diverging nature of the propagation of the covariance estimate in the prediction step for both 

an EKF and UKF, it follows that unobserved objects will have increasing values of 1
i,k 1̂  . Also, 

if the value of 1
i,k 1̂   remains high for a particular object which is sparsely available for 

observations, it simply makes that object a priority, in that its value for 1
i,k 1̂   is so high with 

respect to others that it may be viewed at every opportunity to take a measurement, with those 
opportunities occurring rarely. This concept will be highlighted later in Section 4.  

Thus, given a motivation for each sensor to observe the object whose history trends strongest 
towards divergence, it follows that when using an LLE-based method of tasking, the elements of 
the visibility matrix can be evaluated as  

    l a a
i,k 1 k 1 i,k 1i, j ,k 1

ˆ i, j O ,S            (192) 

Additionally, the decision process can be very simply represented as each sensor observes the 
object with the highest largest Lyapunov exponent estimate, given all the available objects to that 
sensor. 
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  
   i, j ,k 1 i, j ,k 1i

i, j ,k 1

1 i max , 0

0 otherwise

 
  



  


 (193) 

3.3.4.1.		Calculating	the	LLE	for	an	EKF		
 

Evaluating the LLE for an EKF consists of merely using the initial covariance estimate for 

object i *
i,0P̂  (which is equal for all objects in all simulations, as described in Section 4), and the 

forecast covariance estimate evaluated using Equation 40 as inputs in Equation 191. It should be 
noted that the LLE is based only on the object, and has no dependence on the sensor(s) which are 
available to that object. 

3.3.4.2		Calculating	the	LLE	for	a	UKF	
 

Evaluating the LLE for an EKF consists of merely using the initial covariance estimate for 

object i *
i,0P̂  (which is equal for all objects in all simulations, as described in Section 4), and the 

forecast covariance estimate evaluated using Equation 53 as inputs in Equation 191. It should be 
noted that the LLE is based only on the object, and has no dependence on the sensor(s) which are 
available to that object. 

3.3.4.3		Calculating	the	LLE	for	an	AEGIS	Filter	
 

Evaluating the LLE for an EKF consists of merely using the initial covariance estimate for 

object i *
i,0P̂  (which is equal for all objects in all simulations, as described in Chapter 4), and the 

forecast covariance estimate evaluated using Equation 78 (replacing the superscript * with f, 

serving as an approximation f ,gmm f
i,k 1 i,k 1

ˆ ˆP P  ) as inputs in Equation 191. It should be noted that the 

LLE is based only on the object, and has no dependence on the sensor(s) which are available to 
that object. 
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4.0 RESULTS AND DISCUSSION 

4.1  Initialization 
 

Using the nonlinear dynamics and measurement functions outlined in Equations 2 and 15, the 
necessary inputs to execute the estimation and tasking outlined in Section 3 are presented. Two 
types of simulations will be executed. The first will be a simulation in which initial state estimate 
errors, covariance estimates, and sensor noise reflect values similar to what can be expected for 
the tracking of space objects, and is referred to as the low-error test case [29]. The second 
simulation, referred to as the high-error test case, will have slightly higher initial position errors 
and sensor noise, to determine if coupling effects are predominate as filters are stressed. 

The initial estimates for each objects state and covariance are provided, given by 

 *
i,0 i,0 i

ˆ ˆX x X  


 (194) 

where iX̂  represents a value generated from a zero-mean Gaussian distribution of covariance 

*
i,0P̂  and PDF defined as  g *

i,0 i,0
ˆp x ;0. P


. Additionally, the initial covariance is defined by 
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Initial conditions for the states of the sensors as well as their field of regard constraints are 
found in Table 2. The state trajectories resulting from these initial conditions are generated using 
a 7th - 8th order Runga-Kutta numerical integration algorithm. Possible sensor measurements are 
then generated when objects are in the field of regard of a sensor via the measurement 
Equation15 applied to these trajectories. 

Four ground-based sensors are chosen so that their respective field of regard covers the 
majority of space around low Earth orbit (LEO), with that area dissipating as objects get closer to 
geosynchronous Earth orbit (GEO). To simulate this, each of these four sensors can view objects 
in LEO, two can view objects in medium Earth orbit (MEO) and one can view objects in GEO. 
This was done so that the sensor-object dynamics would have some diversity, encompassing 
many orbits, and varying opportunities for observation, as well as periods where no observations 
were possible. Additionally, a single orbiting sensor is introduced to allow for multiple sensors to 
view a single object, as well as cover a large orbit regime (i.e. the orbiting sensor has the 
possibility to make observations in LEO, MEO, or GEO, but not all three at one time). A table 
containing sensor range and half-angle constraints are presented in Table 3. 
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Table 2. SSA Sensor Initial States (note j = 1 represents orbiting sensor) 
Sensor (j) s

j,0x  (km) s
j,0y  (km) s

j,0x  (km/sec) s
j,0y  (km/sec) 

1 3.9138 x 103 6.8712 x 103 -8.2702 4.0600 

2 4.1925 x 103 4.7972 x 103 -0.3498 0.3057 

3 -3.5957 x 103 5.2594 x 103 -0.3835 -0.2622 

4 5.7576 x 103 -2.7277 x 103 0.1989 0.4198 

5 -4.9047 x 103 -4.0662 x 103 0.2965 -0.3577 

 
Table 3. SSA Sensor Constraints (note j = 1 represents orbiting sensor) 

Sensor (j) Δj (km) Ψj (deg) 

1 104 180.0 

2 4.4157 x 104 10.0 

3 2.5371 x 104 20.0 

4 8.871 x 103 50.0 

5 3.0 x 104 15.0 

 
Furthermore, the constant additive zero-mean Gaussian process noise and its associated 
covariance are given by 
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Table 4. Constants in SSA Simulation 

Constant Value 

µE 3.986 x 105 (km2/sec3)

E 7.2921 x 10-5 (rad/sec)

xw  10-6 (km/sec2) 

yw  10-6 (km/sec2) 

tf 172,328 (sec) 

ft t   500 

 
All other constants not specific to either the low-error or high-error simulations are given in 

Table 4. Constants for the simulation time and number of time steps are chosen so that objects 
can experience a range of estimate qualities based on an object’s number of observations, and 
time gaps between possible observations. The purpose of this is to highlight penalties/benefits of 
tasking decisions. As stated previously, the primary objective of these studies is to investigate the 
coupling between tasking and estimation using satellite tracking as an example, and not to 
exactly model the real-world process of monitoring space objects (such as in space situational 
awareness, SSA). Therefore, these constants were chosen so they could best aid in this 
investigation. 

4.2  Post-Simulation Performance Metrics 
 
Once a simulation is completed, various performance metrics are calculated to give a quantitative 
measure of how well each estimator-tasking combination tracked all Ns objects throughout the 
duration of the simulation. These performance metrics should be chosen so that insights can be 
gained not only on how well the state estimates performed with respect to the true state x


, but 

also how well the covariance estimates reflected the error between the estimated and true state. 
Performance metrics should also highlight how estimation errors were distributed (for example, 
were there many objects with low errors and only a few with high, or were the errors evenly 
distributed) allowing for a more in-depth assessment of performance. 

Candidates for scalar performance metrics (to give a top-level snapshot of performance) 
include one to measure the overall estimation accuracy of the simulation, which is the average 
position error over all objects for the simulation time span 
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where 

    2 2* *
i,k i,k i,k i,k i,kˆ ˆr x x y y      (199) 
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Additionally, the average position error for each object can be calculated by 
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  (200) 

Another scalar performance metric is also calculated in order to estimate difficulty with data 
association, which is average estimated error ellipse area 
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where 1
i,k̂  and 2

i,k̂  represent the eigenvalues of the upper left 2x2 matrix of the covariance 

estimate (or the covariance of the position estimates). Assuming that these eigenvalues represent 
an estimated semi major and semi minor axis of a Gaussian error ellipse, the metric given in 
Equation 201 will give an indication of difficulty in data association due to the fact that as 
estimated errors increase, the area of uncertainty surrounding a particular state estimate will 
grow, making pinpointing an object’s exact location, as well as possibly differentiating it 
amongst other neighboring satellites more difficult. 

Graphical performance metrics were also calculated to give a visual representation of how 
each estimator/tasking combination performed. The first of which is simply a histogram showing 

the percentage of position errors falling within error bounds of i,kr 1  , i,k1 r 5   , 

i,k5 r 10   , up to i,kr 1000   where all units are in kilometers. 

Also, histograms are created which give an indication on how well the estimated position 
errors, provided by the filters were performing with respect to the true position errors, 
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This metric is calculated for each object at each simulation time step, and plotted as a 
histogram binning them in 0.2 increments from 0 to 3, where each increment represents a 

multiplicative factor of the estimated position standard deviation    2 2r x y
i,k i,k i,kˆ ˆ ˆ    . This is 

done to show how close the actual position error is to the estimated position standard deviation

   2 2r x y
i,k i,k i,kˆ ˆ ˆ     

 
 derived from the covariance estimate19. 

The true state at each time step, i,kx


 is calculated before running the simulation by 

numerically integrating Equation 2 over the time span  ft 0, t  using a variable step 7th - 8th 

                                                            
19 A value of P̂

i,kJ 1  would represent a position error reflecting exactly one estimated position 

standard deviation 
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order Runga-Kutta algorithm. These metrics were not used in the simulation (except for data 
association, which was removed as a variable in these studies as described in Section 3), but 
were simply used to quantify the performance of the respective filtering algorithms. 

4.3  Low-Error Simulation 
 

As described in Section 3, 100 objects are distributed with semi major axes and eccentricities 
shown in Figure 13. Even though 100 objects were originally created, only 94 of these objects 
made passes within at least one sensor’s field of regard during the simulation time span. Since 
there is no purpose in evaluating performance of objects which could never have been physically 
observed by any sensors, all simulation performance is calculated with respect to the Ns = 94 
objects which had the possibility for observation. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 13. Distribution of semimajor axes and eccentricities of 100 objects in low-error 
simulation 
 
Initial object state standard deviations (used in both selecting the initial state estimates, and 
defining the initial covariance estimate) for the low-error test case are given in Table 5, 
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Table 5. Initial Standard Deviations: Low-Error Simulation 

Standard Deviation Value (for all i) 

x
i,0  1 (km) 

y
i,0  1 (km) 

x
i,0   1 x 10-3 (km/sec) 

y
i,0   1 x 10-3 (km/sec) 

Sensor noise for these low-error simulations are chosen to reflect values close to the ideal range 

and angle variances used in satellite tracking applications [29] with  2 2
j 0.5 km   and 

 2 2
j 0.1 deg j   . 

Using these inputs and the performance metrics outlined in Section 4.2, simulations for 94 
satellites, four ground based sensors and one space based sensor are conducted by implementing 
FIG, SIG, and LLE-based tasking utilizing EKF, UKF, and AEGIS estimators. However, as an 
initial comparison, performance metrics outlined in Section 4.2 are presented for an ideal 
tracking scenario in which sensors can measure all objects in the field of regard at each time step. 
This ideal scenario, referred to henceforth as the all data case, represents an estimate for the 
lower bound on the performance of any case where the number of simultaneous measurements is 
limited. In the following sections, performance is evaluated for the ideal all data case, followed 
by a further investigation into the FIG, SIG, and LLE-based tasking strategies. 

4.3.1  All Data Tasking 
 

Histograms showing percentage of position errors falling within the bins described in earlier 
in this section for the all data simulation is presented in Figure 14. Another histogram showing 
the percentage of position errors falling within specified multiplicative factors of the estimated 
position standard deviation are found in Figure 15. Additionally, tabulated results showing the 
scalar performance metrics outlined in Equations 198 and 201 are presented in Table 6. 

 
Table 6. Simulation Performance Metrics for All Data Low-Error Simulation 

Filter rE  (km) rÂ  (km2) 

EKF 5.512 3.630 x 102 
UKF 5.515 2.773 x 102 

AEGIS 4.632 2.570 x 102 
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Figure 14. EKF, UKF, and AEGIS histograms of position estimate error distributions for all data 
simulation. Plots include data from all objects at all simulation time steps. 
 

From observing Figures 14 - 15 as well as Table 6, the AEGIS filter has the best performance 
in the all data simulation, followed by the UKF and EKF. The AEGIS performs the best due to 
the fact that it had the lowest average position error (resulting from the greatest percentage of 
position estimates within 1 km), as well as the lowest average estimated error ellipse area. Figure 
15 also shows that while the AEGIS filter provides the lowest average estimated error ellipse 
area, it does so at the cost of occasionally having overconfident uncertainty estimates (as shown 

by having the greatest percentage of position errors r
i,k i,kˆr   ). An overconfident uncertainty 

estimate implies that the estimated uncertainty (or standard deviation) derived from the 
covariance estimate may be too low with respect to the actual error of the state estimate. 

However, since the AEGIS filter produced more position errors within r r
i,k i,k i,kˆ ˆ0.8 r 1.2     

than the EKF or UKF, it also produced the most accurate estimates. Using similar logic, it is easy 

to see that the EKF and UKF filters provide a large amount of position errors r
i,k i,kˆr 0.8  , 

implying that just as the AEGIS filter may have the tendency to be overconfident, the EKF and 
UKF may be under confident (i.e. producing uncertainty estimates that are too high compared to 
the actual estimate error). 
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Figure 15. EKF, UKF, and AEGIS histograms of P̂
i,kJ  metric in Equation 202 for all data 

simulation. Plots include data from all objects at all simulation time steps 
 

While Table 6 shows the UKF and EKF have similar performance with respect to their 
average position errors, the UKF provides these estimates with a lower average position error 
ellipse than the EKF. The significance is in the propagation and updating of the covariance 
estimates, where it is shown here that the UKF can provide similar state estimate quality to the 
EKF but to less of a degree of uncertainty. Furthermore, the AEGIS filter provides an even lower 
degree of uncertainty in its estimates. To investigate why the UKF and AEGIS filter provide 
better uncertainty estimates than the EKF, Figure 16 shows the propagation of the average 
estimated error ellipse area in Equation 201 for the object with the worst average position error. 
This figure illustrates an important fact that despite having identical measurement data at 
identical times, the UKF, and furthermore the AEGIS filter provide not only better propagation 
of uncertainty (illustrated from the time span 0 - 110,000 sec), but also updates in uncertainty 
(highlighted from the time span 110,000 - 130,000 sec). These reflect advantages the UKF filter 
has in the nonlinear estimation of uncertainty over the EKF, but also in the AEGIS filter’s 
advantage in updating uncertainty estimates using a GMM over the Gaussian uncertainty of the 
UKF. Advantages such as these in the propagating and updating of uncertainty and/or state 
estimates (though uncertainty will have more sway over the performance when coupled with 
tasking, since all tasking metrics are covariance-based) will play a critical role in the 
performance advantages these filters will gain when coupled with a covariance-based tasking 
strategy. 
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Figure 16. EKF, UKF, and AEGIS plots of 1 2
r i,k i,kÂ      metric for the object with the 

highest average position error in the all data simulation. 
 

To investigate how each individual object performed in the all data simulation, Figure 17 
shows the average position error for each simulated object, while Figure 18 shows how many 
updates each of these objects received. Figure 18 illustrates the diversity in the number of 
updates each object received, which Figure 17 shows is strongly correlated to the average 
position error an object would obtain throughout the simulation. Even in this ideal case where 
sensors can observe more than one object at a time, some objects are sparsely available for 
observation (e.g. objects 18, 38, 58, and 75), while other objects have several (most notably 
object 57, which is observable by at least one sensor at every simulation time step). For all 
objects, the AEGIS filter had the greatest tendency to provide the best average position errors as 
opposed to the EKF or UKF, which both had a series of objects with the worst errors.  
 
 
 
 
 
 
 
 
 
 
 
Figure 17. Bar graphs showing the log10 average position error for each object given in Equation 
200, through implementation of an EKF, UKF, and AEGIS filter in conjunction with all data 
tasking strategy. In this case, all filters have equal amounts of updates for each object, reflecting 
the maximum updates possible for all objects. 
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Figure 18. Bar graphs showing the updates each object received through implementation of an 
EKF, UKF, and AEGIS filter in conjunction with all data tasking strategy. In this case, all filters 
have equal amounts of updates for each object, reflecting the maximum updates possible for all 
objects.  

4.3.2  FIG Tasking 
 

Table 7 shows the scalar performance metrics outlined in Equations 198 and 201 for the low-
error simulation using FIG tasking. In addition, figures showing the distribution of position 

errors and how these errors compared to the estimated r
i,kˆ3  provided by the filter covariance 

estimates are presented in Figures 19 - 20. Results show that the EKF is especially affected by 
this selection of tasking strategy, as opposed to the UKF or AEGIS filter. This is shown in the 
very large average error metric in Table 7, along with a drastic increase of position estimate 

errors ( i,kr ) greater than 25 km in Figure 19, as well as percentage of position estimate errors 

greater than r
i,kˆ3  in Figure 20. In the latter case, a position estimate error greater than r

i,kˆ3  

implies that the actual position error is much greater than what the filter’s estimates are 

indicating they should be. This is also reflected in the discrepancy of the values for rÂ  

between the EKF and the other filters in comparison to its much larger deviations in rE . This 

is most evident when observing the 3rd and 4th columns in Table 7, where the errors accumulated 
in the FIG simulation are normalized with respect to the errors those filters achieved in the all 
data simulation. These results show that the EKF produced a position error over 100 times larger 
using FIG tasking as opposed to the UKF and AEGIS filters which were marginally worse by 
comparison. Also, the EKF produced an estimated error ellipse area only 5 times greater than in 
the all data simulation, implying that the EKF has a greater tendency to underestimate the 
possible error in its estimations than the UKF or AEGIS filter. The poor performance shown in 
the EKF-FIG combination would lead to either severely inaccurate object uncertainty and/or 
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location estimates, or an inability to continue to monitor those objects should these methods be 
used in a real satellite tracking application. 

As for the UKF-FIG combination, the performance was much better, and did not experience 
the issues that were present in the implementation of the EKF. In particular, the UKF produced 

very little position errors outside of the r
i,kˆ3  bounds as shown in Figure 20. This is the result of 

the UKF being able to produce a Gaussian covariance which more accurately models the actual 
uncertainty in an object’s estimates than the EKF, an effect which was highlighted in Figures 9 - 
10. 

The AEGIS filter produced the best performance using the FIG tasking, as reflected by 
having the lowest scalar performance metrics in Table 7. Furthermore, Figure 19 shows that the 
AEGIS filter provided a disproportionate amount of estimates within the tightest position error 

bounds of i,kr 1 km  , as it did in the all data simulation. When observing Figure 20, while the 

AEGIS filter produced more position errors outside of the r
i,kˆ3  bounds, these estimates were 

few (roughly 1%). What is more important to realize in these results is that the AEGIS filter 

produced the most position errors within r r
i,k i,k i,kˆ ˆ0.8 r 1.2    , meaning that while it produced 

slightly more position errors outside the r
i,kˆ3  bounds than the UKF, it also generally produced 

more accurate uncertainty estimates than the UKF or EKF. 
 

Table 7. Simulation Performance Metrics for FIG Low-Error Simulation 

Filter 
rE  (km) rÂ  (km2) r Tasking

r All Data

E

E



  
r

Tasking

r
All Data

Â

Â



  

EKF 5.627 x 102 1.806 x 103 102,086 4.975 

UKF 7.950 3.202 x 102 1.442 1.155 

AEGIS 7.290 2.809 x 102 1.574 1.093 
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Figure 19. EKF, UKF, and AEGIS histograms of position estimate error distributions for FIG 
simulation. Plots include data from all objects at all simulation time steps. 
 
 
 
 
 
 
 
 
 
 
 

Figure 20. EKF, UKF, and AEGIS histograms of P̂
i,kJ  metric in Equation 202 for FIG simulation. 

Plots include data from all objects at all simulation time steps. 
 

To investigate why performance discrepancies existed in the implementation of EKF, UKF, 
and AEGIS filters in conjunction with an FIG tasking strategy, Figures 21 - 22 show the amount 
of updates each simulated object received along with their corresponding average position errors 
in the FIG simulation. 
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Figure 21. Bar graphs showing the log10 average position error for each object given in Equation 
200, through implementation of an EKF, UKF and AEGIS filter in conjunction with an FIG 
tasking strategy. 
 
 
 
 
 
 
 
 
 
 
 
Figure 22. Bar graphs showing the updates each object received through implementation of an 
EKF, UKF, and AEGIS filter in conjunction with an FIG tasking strategy. The FIG tasking 
results in many updates to a select few objects, while many other objects receive little to none. 
 

As shown in Figure 22, when using FIG tasking, several objects received a 
disproportionately large amount of updates (e.g. objects 10, 37, 92, etc.) with respect to many 
others which received little to none (e.g. objects 11, 18, 27, etc.). The result is that many objects 
accumulated large estimate errors due to these few updates, while those that had the most 
observations resulted in much better average position estimate errors. In particular, the objects 
which received little to no observations had errors which were much greater when using an EKF 
as opposed to a UKF or AEGIS filter, which resulted in the vast performance discrepancies as 
seen in Table 7, as well as Figures 19 - 20. This was in part due to the fact that, as illustrated in 
the work of Teixeira et al.[28], less updates will result in longer propagation times for the 
estimates which will negatively affect the EKF covariance estimates more than the UKF or 
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AEGIS filter due to its linear covariance propagation. Furthermore, Figure 22 shows that for the 
particular objects that received little updates, the UKF and AEGIS filters consistently had more 
updates than the EKF (which sometimes had zero). These two factors contributed to several 
objects having lower average position estimate errors when using a UKF or AEGIS filter as 
opposed to an EKF. Similarly, the EKF always produced more observations for many objects 
which had the lowest average position estimate errors (e.g. objects 10, 31, 37, etc.), which 
generally resulted in those objects having comparable average position estimate errors using an 
EKF with respect to a UKF or AEGIS filter (commonly, the EKF would produce lower errors 
than the UKF in many of these cases). However, these few good objects for the EKF could not 
compare to the numerous ones which performed poorly, resulting in the UKF and AEGIS filters 
severely outperforming the EKF for the application of FIG tasking. 

While the UKF and AEGIS filters provided better performance for many objects as opposed 
to the EKF, discrepancies were still present between the two. Specifically, for a majority of 
objects the AEGIS filter would produce average errors lower than the UKF, while also 
dispensing observations differently than the UKF. For example, the AEGIS filter would 
generally provide slightly more updates to objects which were either available for few 
observations (e.g. objects 18, 58, 75), or objects which had several observations and generally 
low errors (e.g. objects 5, 10, 37, etc.). In each of these cases the AEGIS filter produced equal or 
better average position errors than the UKF. When coupled with the fact that the AEGIS filter 
generally produced comparable (often better) average position errors for objects for which it 
distributed less updates than the UKF, the result is a more efficient use of tasking decisions. 

To investigate why there was such a performance discrepancy between the EKF and the 
UKF/AEGIS filters when implementing the FIG metric, Figures 23 - 28 show when object 71 
(the worst performing FIG object using either filter) was available for observation, tasked for 
observation, as well as the time histories of its position estimate error using FIG, the position 
error in the all data case, its maximum FIG utility metric (at times it was available for 
observation), and the average FIG metric for objects tasked for observation. Figure 26 shows that 
despite being available for observation several times during the simulation, using the EKF only 
resulted in 5 observations while the UKF and AEGIS filter resulted in 12 and 13 observations 
respectively. This increase in observations results in the position error for this object being much 
better, and more stable for the UKF and AEGIS filters than the EKF, where it diverged to the 
point where the filter failed to provide realistic estimates. If the EKF-FIG combination instead 
resulted in the object being tasked for observation early in the simulation, as was the case with 
the other filters, this divergence may have been avoided. 
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Figure 23. Plot of the position error i,kr  and tasking decisions for object 71 using FIG tasking 

strategy in conjunction with an EKF. Thick sections of line represent times when observations 
were available between object 71 and one or more sensors. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 24. Plot of the position error i,kr  and tasking decisions for object 71 using FIG tasking 

strategy in conjunction with a UKF. Thick sections of line represent times when observations 
were available between object 71 and one or more sensors. 
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Figure 25. Plot of the position error i,kr  and tasking decisions for object 71 using FIG tasking 

strategy in conjunction with an AEGIS filter. Thick sections of line represent times when 
observations were available between object 71 and one or more sensors. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 26. Plot of the FIG utility metric and tasking decisions for object 71 using FIG tasking 
strategy in conjunction with an EKF. Thick sections of line represent times when observations 
were available between that object and one or more sensors. 
 

When observing Figure 26, it is easy to see why this occurred. The EKF-based FIG metric 
for object 71 consistently stayed below the average FIG metric for the objects tasked for 
observation, meaning it was rarely put in a position to receive an observation. However, the UKF 
and AEGIS-based FIG metrics for this object managed to have many more observations, due to 
the fact that the FIG metric, while generally lower than the average, had several instances when 
it was competitive with respect to the FIG metrics of objects available for observation. Of 
additional note is that the EKF-based FIG value for object 71, as well as the average among all 
objects had fairly homogeneous time histories, where for the UKF and AEGIS filter many more 
spikes occurred. For object 71 these spikes first occurred through approximately the first two 
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thirds of the simulation, and then diminished. This behavior matches that of the UKF and AEGIS 
position error plot for object 71 in Figures 24 - 25, where errors would experience significant 
growth at times between updates, until approximately two thirds of the way through the 
simulation where they stabilized. However, this was not the case for the FIG metric when used 
with an EKF, where the error and utility metric were completely uncorrelated. This phenomenon 
can be easily explained by specifically calculating the FIG metric for an EKF. By applying 
Equation 127 to Equation 126, the result is 

    
   
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 (203) 

which if applied to Equation 136 results in a metric whose calculation depends only on the 
objects prediction step estimate location with respect to the sensor location, and the sensor noise 
covariance (which for the low-error simulations is constant for each sensor). Furthermore, when 
evaluating the trace of the FIG matrix using an EKF, this will only contain information on 
position, since the diagonal elements of the FIG matrix associated with velocity information will 
always be zero. This illustrates a direct consequence the EKF linearizations (in this case, the 
linearization of the nonlinear measurement function) have on the evaluation of the FIG metric, 
and results in the poorly distributed EKF tasking decisions in Figures 22 and 23, as well as FIG 
metric behavior seen in Figure 26. The only way to alleviate this consequence would be to 
ensure that EKF measurement equations contain functions of all the state elements to avoid the 
zero diagonal values in the FIG matrix calculation. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 27. Plot of the FIG utility metric and tasking decisions for object 71 using FIG tasking 
strategy in conjunction with a UKF. Thick sections of line represent times when observations 
were available between that object and one or more sensors. 
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Figure 28. Plot of the FIG utility metric and tasking decisions for object 71 using FIG tasking 
strategy in conjunction with an AEGIS filter. Thick sections of line represent times when 
observations were available between that object and one or more sensors. 
 

Additionally, the scale of the FIG utility metric values vary widely between the EKF and 
other filters, another consequence of the zero-valued velocity information diagonals in the EKF-
FIG matrix. Since velocity variances for this simulation can be on the order of 10-6, it is easy to 
see how information metrics (which roughly incorporate the inverse of these variances) could 
produce large discrepancies between the values of FIG utility metrics for the EKF and 
UKF/AEGIS filters as seen in Figures 26 - 28. 

If similar steps are taken for a UKF or AEGIS filter, the value for  i, j ,k 1   will not only have 

non-zero diagonal elements of the FIG matrix, but they will also be functions of the distribution 
of sigma points. In particular, both the distribution of the sigma points in the prediction step, and 

their transformation into measurement space will factor into the calculation of  i, j ,k 1   and 

therefore  i, j ,k 1 . This results in the FIG metric having a less homogeneous time-history for the 

UKF and AEGIS filter than the EKF, adding more diversity to the elements in the visibility 
matrix, which increases the chances for more evenly distributed tasking decisions and overall 
better performance. 

From observing Figures 27 - 28, the behavior is very similar, except at the beginning of the 
simulation where the AEGIS filter provided much more updates, and towards the end of the 
simulation when average FIG values for the AEGIS filter began to stabilize and produced less 
updates than the UKF. Though object 71 ended on roughly the same estimated position error for 
both the UKF and AEGIS filter, the average estimated position error over the entire simulation 
was lower when using the AEGIS filter than the UKF, as shown in Figure 21. Figure 25 shows 
that this better average estimated position error was probably due to the simulation time span 
from approximately 40,000 - 110,000 seconds, where the AEGIS filter produced more updates 
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early in the simulation, resulting in less divergence in estimation error during segments when no 
updates occurred. This shows that while the UKF and AEGIS filter had approximately the same 
amount of updates for this object, they occurred at different times in the simulation. The fact that 
these occurred earlier in the simulation for the AEGIS filter, leading to less error (almost one 
order of magnitude less) than the UKF for a significant portion of the simulation illustrates the 
slight benefits of using the AEGIS filter to provide FIG tasking schedules over the UKF.  

4.3.3  SIG Tasking 
 

Table 8 shows the scalar performance metrics outlined in Equations 198 and 201 for the low-
error simulation using SIG tasking. In addition, figures showing the distribution of position 

errors and how these errors compared to the estimated r
i,kˆ3  provided by the filter covariance 

estimates are presented in Figures 29 - 30. Results show that each filter obtains better 
performance than in the implementation of the FIG tasking strategy, particularly the EKF. Unlike 
in the FIG simulation, the SIG tasking strategy does not have the disproportionately bad 
performance for the EKF, as shown in the comparable average error metric (with respect to the 

UKF and AEGIS filter) in Table 7, along with a position estimate errors  i,kr  greater than 25 

km in Figure 29, and percentage of position estimate errors greater than r
i,kˆ3  in Figure 30. 

While the EKF still produced the most position errors outside the r
i,kˆ3  bounds in Figure 30 

(only slightly higher than the AEGIS filter), it also produced estimated position errors in a 
distribution very similar (only slightly worse) to the UKF. 

For the UKF-SIG combination, the UKF produced very little position errors outside of the 
r
i,kˆ3  bounds as shown in Figure 30, and managed to obtain better position errors as shown by 

Table 8 and Figure 29 than in the FIG simulation. 
The AEGIS filter once again produced the best performance using the SIG tasking, as 

reflected by having the lowest scalar performance metrics in Table 8. Furthermore, Figure 19 
shows that the AEGIS filter provided a disproportionate amount of estimates within the tightest 
position error bounds of i,kr 1   km, as it did in the all data and FIG simulations. When 

observing Figure 20, while the AEGIS filter produced more position errors outside of the r
i,kˆ3  

bounds than the UKF, these estimates were few (less than 1%). What is more important is that 

the AEGIS filter produced the most position errors within r r
i,k i,k i,kˆ ˆ0.8 r 1.2    , meaning that 

while it produced slightly more position errors outside the r
i,kˆ3  bounds than the UKF, it also 

generally produced more accurate uncertainty estimates than the UKF or EKF. 
Regarding overall performance, the SIG tasking produced better estimates for all filters than 

in the FIG simulation, with the reduction in scalar performance metrics in Table 8, and increase 
in position errors within i,kr 1   km for all filters. 
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To investigate why performance discrepancies existed in the implementation of EKF, UKF, 
and AEGIS filters in conjunction with an SIG tasking strategy, Figures 31 - 32 show the amount 
of updates each simulated object received along with their corresponding average position errors 
in the SIG simulation. 

 
Table 8. Simulation Performance Metrics for SIG Low-Error Simulation 

Filter 
rE  (km) rÂ  (km2) r Tasking

r All Data

E

E




 

r
Tasking

r
All Data

Â

Â



  

EKF 7.361 3.938 x 102 1.335 1.085 

UKF 7.206 3.057 x 102 1.307 1.102 

AEGIS 5.789 2.744 x 102 1.250 1.068 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 29. EKF, UKF, and AEGIS histograms of position estimate error distributions for SIG 
simulation. Plots include data from all objects at all simulation time steps. 
 

As shown in Figure 32, when using SIG tasking there was a more even distribution of 
observations as opposed to the FIG simulation, with the AEGIS filter heavily favoring certain 
objects for observation (most notably objects 21, 34, 35 and 39), and the UKF and EKF 
providing a slightly more even distribution of updates (except for objects 49 and 57). The result 
is that fewer objects accumulated large estimate errors than what was experienced using FIG 
tasking, and in particular many objects that received little to no observations in the FIG 
simulation received several observations in the SIG simulation. This had a drastic effect on the 
performance of the EKF relative to the UKF and AEGIS filter in the SIG simulation as compared 
to the FIG simulation, as shown in Figure 31.  
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Figure 30. EKF, UKF, and AEGIS histograms of P̂
i,kJ metric in Equation 202 for SIG simulation. 

Plots include data from all objects at all simulation time steps 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 31. Bar graphs showing the log10 average position error for each object given in Equation 
200, through implementation of an EKF, UKF and AEGIS filter in conjunction with a SIG 
tasking strategy. 
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Figure 32. Bar graphs showing the updates each object received through implementation of an 
EKF, UKF, and AEGIS filter in conjunction with a SIG tasking strategy. 
 

While the UKF provided a slight overall performance advantage to the EKF, Figure 31 shows 
that the EKF produced lower average position estimate errors for several objects. The difference 
was that for objects which accumulated the largest errors, the EKF would have a larger error than 
the UKF or AEGIS filter (objects 11, 21, 34, 94), which would have resulted in a higher overall 
average estimated position error in Table 8. Furthermore, Figure 31 shows that the UKF and in 
particular the AEGIS filter produced lower average estimated position errors for the best 
performing objects than the EKF (e.g. objects 5, 9, 30, etc). 

The EKF, UKF and AEGIS filters still maintained differences in observations between all 
objects, for which the large amount of observations the AEGIS-SIG combination produced for 
several objects (e.g. objects 21, 34, 35, 39) was the most obvious difference. For these objects 
where the AEGIS produced many more observations than the EKF or UKF, the AEGIS filter was 
able to produce equal or better average estimated position errors. However, it was also the case 
that for several objects which received relatively low updates using the AEGIS filter, average 
estimated position errors were still lower than when using the EKF or UKF (e.g. objects 2, 49, 
and 86). This points to the AEGIS filter providing efficient sensor schedules so that it could 
achieve better performance using less estimates for many objects, occasionally leading to an 
excessive amount of updates for some objects which accumulated the largest errors (e.g. objects 
21 and 34). Also, in a similar manner to the FIG simulation, the AEGIS filter would generally 
provide equal or more updates to objects which were available for few observations (e.g. objects 
18, 19, 42, etc), and fewer observations for objects which were often available (most notably 
object 57). This makes intuitive sense that objects with fewer availabilities for observations 
should be given preference over objects which are readily available, and points to the AEGIS 
filter being more efficient than either the EKF or UKF in terms of the sensor schedules which 
resulted from its implementation with SIG. 

To investigate why sensor tasking differed between the EKF, UKF, and AEGIS filters when 
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implementing SIG, Figures 33 - 38 show when object 21 (the worst performing SIG object using 
either filter) was available for observation, tasked for observation, as well as the time histories of 
its position estimate error using SIG, the position error in the all data case, its maximum SIG 
utility metric (at times it was available for observation), and the average SIG metric for objects 
tasked for observation. Figures 36 - 38 shows that object 21 was not even available for 
observation until a simulation time of about 110,000 seconds, where each filter provided 
immediate tasking observations. The major differences between the filters in this case was that 
the UKF and AEGIS filter provided much better updates (resulting in lower position errors) than 
the EKF from a time span of 110,000 - 130,000 seconds, and that the AEGIS filter provided 
much more observations (more than twice as many) than the EKF or UKF. 

In Figures 36 - 38, the SIG metric for object 21 varies little between the EKF and UKF 
filters, while there is a noticeable difference using the AEGIS filter. The first difference is that 
the mean SIG for tasked objects consistently decreases throughout the simulation, where it stays 
roughly the same for the EKF and UKF. The second is that the SIG metric for object 21 remains 
closer to the mean for the AEGIS filter than the EKF or UKF, resulting in more observations 
using the AEGIS filter. In either case, it is obvious that there is something which is driving the 
AEGIS filter to produce different values for SIG than the EKF or UKF, resulting in different 
tasking schedules, and overall better performance. 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 33. Plot of the position error i,kr  and tasking decisions for object 21 using SIG tasking 

strategy in conjunction with an EKF. Thick sections of line reflect times when observations were 
available between object 21 and one or more sensors. 
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Figure 34. Plot of the position error i,kr  and tasking decisions for object 21 using SIG tasking 

strategy in conjunction with a UKF. Thick sections of line reflect times when observations were 
available between object 21 and one or more sensors. 
 
To investigate this, Figure 39 shows the evolution of the estimated error ellipse area for the EKF, 
UKF, and AEGIS filter for object 21. This figure is chosen since the SIG metric uses 

determinants of the covariance estimate in its calculation, and since the calculation of errÂ  takes 

the square root of the product of position covariance eigenvalues20, the determinant of the 
covariance and estimated error ellipse area will be strongly correlated. Therefore, from Figure 

39, it is obvious that the time histories of errÂ  differ between the filters, as they did in the all data 

simulation illustrated in Figure 16. The primary difference is that the AEGIS  filter typically gets 

much better covariance updates resulting in a lower value of errÂ  when updates occur, and 

therefore less divergence in errÂ  in subsequent time steps when updates do not occur. Since the 

SIG metric relies on the ratio of determinants of covariance estimates between the forecast and 
update steps, if this change is greater for the AEGIS filter than other filters, it will result in a 
different evolution in the SIG metric as well. In the case of object 21 using an AEGIS  filter, the 

result is that the SIG metric decreases more over time, due to less divergence in errÂ  during the 

forecast step, and less reduction in errÂ  during observations (since there is less potential to 

obtain information for covariance estimates which are lower with respect to the EKF and UKF). 
Furthermore, if the AEGIS filter provides a larger reduction in covariance estimates during 
observations than the EKF or UKF, it will take less simulation time for many objects to obtain 

                                                            
20 Recall the product of eigenvalues is the same as the determinant of a matrix 
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low covariance estimates, and therefore objects with larger uncertainty (such as object 21, due to 
the long period of no observations in the first half of the simulation) should be allocated more 
observations, such as the case with object 21 (and the other objects with the worst errors as 
shown in Figures 31 - 32). 
 

 
 
 
 
 
 
 
 
 
 
 
Figure 35. Plot of the position error i,kr  and tasking decisions for object 21 using SIG tasking 

strategy in conjunction with an AEGIS Filter. Thick sections of line reflect times when 
observations were available between object 21 and one or more sensors. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 36. Plot of the SIG utility metric I and tasking decisions for object 21 using SIG tasking 
strategy in conjunction with an EKF. Thick sections of line reflect times when observations were 
available between that object and one or more sensors. 
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Figure 37. Plot of the SIG utility metric I and tasking decisions for object 21 using SIG tasking 
strategy in conjunction with a UKF. Thick sections of line reflect times when observations were 
available between that object and one or more sensors. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 38. Plot of the SIG utility metric I and tasking decisions for object 21 using SIG tasking 
strategy in conjunction with an AEGIS filter. Thick sections of line reflect times when 
observations were available between that object and one or more sensors. 
 

These findings could be extended when comparing the EKF and UKF, in that the same 
rationale applies regarding the propagation and updating of the covariance estimate. In this case, 
the UKF provides on average slightly better updates than the EKF, and can provide better 
propagation depending on the nonlinearity of the governing dynamics. In this case, there is a 

noticeable difference in the propagation of errÂ  (and therefore related to a difference in the 

propagation of covariance estimates) from the start of the simulation until about 110,000 
seconds. In addition, the first series of updates just after 110,000 seconds results in a lower value 

of errÂ  for the UKF than the EKF, indicating the UKF received greater reduction in the 
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covariance estimate than the EKF at that time. However, since these better updates resulted in a 

lower value of errÂ  for only a small portion of the simulation, the differences in sensor tasking 

between the EKF and UKF for object 21 were slight, with the UKF only receiving one more 
additional update than the EKF, while the AEGIS filter received 45 additional updates. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 39. EKF, UKF, and AEGIS plots of 1 2
err i,k i,k

ˆ ˆ ˆA      metric for object 21 in the SIG 

simulation 

4.3.4  LLE Tasking 
 
Table 9 shows the scalar performance metrics outlined in Equations 198 and 201 for the low-
error simulation using LLE tasking. In addition, figures showing the distribution of position 

errors and how these errors compared to the estimated r
i,kˆ3  provided by the filter covariance 

estimates are presented in Figures 40 - 41. 
 

Table 9. Simulation Performance Metrics for LLE Low-Error Simulation 

Filter 
rE  (km) rÂ  (km2) r Tasking

r All Data

E

E




 

r
Tasking

r
All Data

Â

Â



  

EKF 7.999 4.018 x 102 1.451 1.107 

UKF 7.687 3.095 x 102 1.394 1.116 

AEGIS 6.324 2.751 x 102 1.365 1.070 
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Figure 40. EKF, UKF, and AEGIS histograms of position estimate error distributions for the 
LLE simulation. Plots include data from all objects at all simulation time steps. 
 

When observing the performance utilizing LLE tasking, it provides better estimates for all 
filters than the FIG strategy, and worse than the SIG method. In addition, the EKF and 
UKF/AEGIS filter do not show the same magnitude of performance discrepancies as they did in 
the case of using FIG-based tasking. From observing Figures 40 - 41, using an LLE tasking 
strategy results in more objects within position estimate errors of 5 km, and much less (especially 

for the EKF) greater than 100 km, or greater than r
i,kˆ3  when compared to the FIG strategy. 

However, when compared to the SIG results, it does not provide better results in any of these 
categories. In addition, just as the case with FIG and SIG tasking strategies, performance 
discrepancies did exist between the application of EKF, UKF, and AEGIS filters, as shown by 
the ratio of LLE average position error compared to the all data case as shown in the third 
column of Table 9. In this case, the EKF provided the worst performance, while the AEGIS filter 
provided the best. The reason for the EKF’s poor performance with respect to the other filters 
was that it produced the least percentage of position estimates within 10 km and within 

r r
i,k i,k i,kˆ ˆ0.8 r 1.2    , most outside of 10 km and greater than r

i,kˆ3 . 

For the UKF-LLE combination, the UKF performed the best in terms of producing few 

position errors outside of the r
i,kˆ3  bounds as shown in Figure 41, and managed to obtain better 

position errors as shown by Table 9 and Figure 40 than in the FIG simulation, but still did not 
generate the quality of estimates as in the SIG simulation. Furthermore, the UKF produced the 

second most percentage of errors within 10 km and r r
i,k i,k i,kˆ ˆ0.8 r 1.2    , falling short only to 

the AEGIS filter. 
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Figure 41. EKF, UKF, and AEGIS histograms of P̂
i,kJ  metric in Equation 202 for the LLE 

simulation. Plots include data from all objects at all simulation time steps 
 

The AEGIS filter once again produced the best performance using the LLE tasking, as 
reflected by having the lowest scalar performance metrics in Table 9. Furthermore, Figure 40 
shows that the AEGIS filter provided a disproportionate amount of estimates within the tightest 
position error bounds of i,kr 1 km  , as it did in all the data, FIG, and SIG simulations. When 

observing Figure 20, while the AEGIS filter produced more position errors outside of the r
i,kˆ3  

bounds than the UKF, these estimates were few (less than 2%). What is more important is that 

the AEGIS filter produced the most position errors within r r
i,k i,k i,kˆ ˆ0.8 r 1.2    , meaning that 

while it produced slightly more position errors outside the r
i,kˆ3  bounds than the UKF, it also 

generally produced more accurate uncertainty estimates than the UKF or EKF. 
To investigate why performance discrepancies existed in the implementation of the EKF, 

UKF, and AEGIS filters in conjunction with an LLE tasking strategy, Figures 42 - 43 show the 
amount of updates each simulated object received along with their corresponding average 
position errors in the LLE simulation. 

In contrast to Figure 22, Figure 43 shows a more even distribution of observations among all 
the simulated objects in much the same way as Figure 32. Furthermore, while several objects 
have a minor difference in the amount of updates received using an EKF, UKF, or AEGIS filter, 
these differences are nowhere near the magnitude shown in Figure 22, except for a few objects 
using the AEGIS filter (e.g. objects 57, 63, and 71). What is interesting though is that for most of 
the objects with the worst position estimate errors (e.g. objects 11, 21, 27, 34, 38, 94, etc.) the 
EKF either had an approximately equal or moderately worse average position estimate error than 
the UKF or AEGIS filters, though these objects often received more updates than the UKF, and 
much less than the AEGIS filter. In fact, just as the case with using SIG tasking, the worst 
performing objects received a disproportionate amount of updates using the AEGIS filter. These 
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differences in tasking decisions show the UKF can provide less observations to a poor 
performing object than the EKF while still maintaining better estimates than the EKF, while the 
AEGIS filter is able to allocate a large amounts of sensor resources to a few poorly performing 
objects while still maintaining typically better performance for other objects as compared to the 
EKF or UKF. In fact, many objects which were able to obtain the best performance under the 
AEGIS filter were given the least number of updates with respect to the EKF and UKF, such as 
objects 5, 22, 49, 70, and 88. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 42. Bar graphs showing the log10 average position error for each object given in Equation 
200, through implementation of an EKF, UKF and AEGIS filter in conjunction with an LLE 
tasking strategy. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 43. Bar graphs showing the updates each object received through implementation of an 
EKF, UKF, and AEGIS filter in conjunction with an LLE tasking strategy. 
 

To examine the LLE metric, and how it effects tasking decisions between the EKF, UKF, and 
AEGIS filter, Figures 44 - 49 show when object 21 (the worst performing LLE object using 
either filter) was available for observation, tasked for observation, as well as the time histories of 
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its position estimate error using LLE, the position error in the all data case, its maximum LLE 
utility metric (at times it was available for observation), and the average LLE metric for objects 
tasked for observation. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 44. Plot of the position error i,kr  and tasking decisions for object 21 using the LLE 

tasking strategy in conjunction with an EKF. Thick sections of line reflect times when 
observations were available between object 21 and one or more sensors. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 45. Plot of the position error i,kr  and tasking decisions for object 21 using the LLE 

tasking strategy in conjunction with a UKF. Thick sections of line reflect times when 
observations were available between object 21 and one or more sensors.  
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Figure 46. Plot of the position error i,kr  and tasking decisions for object 21 using the LLE 

tasking strategy in conjunction with an AEGIS filter. Thick sections of line reflect times when 
observations were available between object 21 and one or more sensors. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 47. Plot of the LLE utility metric 1̂  and tasking decisions for object 21 using the LLE 
tasking strategy in conjunction with an EKF. Thick sections of line reflect times when 
observations were available between that object and one or more sensors. 
 

Figures 44 - 45 show that the worst object in the LLE simulation was one that experienced a 
very long time span when observations were not possible, between times of approximately 0 - 
110,000 seconds (this is the same object with the worst performance in the all data and SIG 
simulations). For all filters, the object was immediately observed at the first instance it was 
available, which was one trait the LLE metric was hypothesized to provide, as described in 
Section 3.3.  
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Figure 48. Plot of the LLE utility metric 1̂  and tasking decisions for object 21 using the LLE 
tasking strategy in conjunction with a UKF. Thick sections of line reflect times when 
observations were available between that object and one or more sensors. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 49. Plot of the LLE utility metric 1̂  and tasking decisions for object 21 using the LLE 
tasking strategy in conjunction with an AEGIS filter. Thick sections of line reflect times when 
observations were available between that object and one or more sensors. 
 
Since object 21 had similar numbers of updates between the EKF and UKF (25 for the EKF, 24 
for the UKF), there was little difference between performance, though the UKF ended with a 
better position estimate than the EKF. This slight difference of one observation follows the trend 
that for the objects with the worst estimation errors, the UKF resulted in slightly less 
observations than the EKF, as was observed in Figure 43. Figure 46 differs from Figures 44 - 45 
primarily in how many more updates object 21 received (52 observations) using the AEGIS filter 
as opposed to the EKF or UKF. This was more than double what object 21 received for either the 
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EKF or UKF, and follows the same trait that was observed using SIG tasking in that the AEGIS 
filter provides a disproportionate amount of updates to the worst performing objects. What is 
interesting is that it does this without sacrificing performance on the objects which receive less 
updates, indicating that in the case of SIG or LLE tasking, the AEGIS filter provides the most 
efficient tasking decisions. 

Figures 47 - 49 show that the LLE metric has a strong correlation to the actual estimate error 
as the simulation progresses (i.e. rises and falls with estimate error). The result is that the LLE 
metric provides an effective prioritization scheme which gives preference to observe objects with 
diverging estimation errors, resulting in the few objects with errors greater than 100 km as seen 
in Figure 42. 

In addition, as was the case for the SIG simulation, the LLE metric for the AEGIS filter 
behaves slightly different than the EKF or UKF, in that its average value of tasked objects 
decreases more over time than for the EKF or UKF. As explained in the SIG simulation, this is 
the result of the advantages in obtaining the covariance estimate using the AEGIS filter as 
opposed to the EKF or UKF. While the LLE and SIG metrics differ in their calculation, they 
both require a scalar quantification of the estimated covariance matrix in their calculation. In the 
case of the LLE metric, this is the square root of the trace of the forecast step covariance, which 
is normalized with respect to the square root of the trace of the initial covariance estimate (equal 
for all objects). Therefore, for the LLE metric to consistently decrease in its time history (in both 
the overall average and of object 21), it implies that the covariance estimates are continuously 
decreasing using the AEGIS filter, where for the EKF and UKF they are somewhat stabilized. 
This fact that covariance estimates experience a greater reduction per observation using the 
AEGIS filter as opposed to the EKF or UKF also explains why the worst objects are given so 
many observations using the AEGIS filter because the average LLE value among all objects 
decreases more using the AEGIS filter. As with the SIG simulation, these observations point to 
the AEGIS filter providing not only an estimation advantage, but also a tasking advantage using 
the LLE strategy as opposed to the EKF or UKF.  

4.4  High-Error Simulation 
 

As described in Section 3, 100 objects are distributed with semi major axes and eccentricities 
shown in Figure 50. Even though 100 objects were originally created, as with in the low-error 
simulation, only 94 of these objects made passes within at least one sensor’s field of regard 
during the simulation time span. Since there is no purpose in evaluating performance of objects 
which could never have been physically observed by any sensors, all simulation performance is 
calculated with respect to the Ns = 94 objects which had the possibility for observation. 
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Figure 50. Distribution of semimajor axes and eccentricities of 100 objects in high-error 
simulation. 
 

Initial object state standard deviations (used in both selecting the initial state estimates, and 
defining the initial covariance estimate) for the high-error test case are given in Table 10. 

 

Table 10. Initial Standard Deviations: High-Error Simulation 

Standard Deviation Value (for all i) 

x
i,0  10 (km) 

y
i,0  10 (km) 

x
i,0   10-3 (km/sec) 

y
i,0   10-3 (km/sec) 

 

Additionally, sensor noise is increased and given in Table 11. In this case, the noise for each 
sensor is a function of the effective range and half angle of that sensor (i.e. noise increases as 
effective range increases). 
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Table 11. Sensor Noise for High-Error Simulations 

Sensor (j) 
j
  (km) j

  (deg) 

1 2.055 0.0134 

2 4.318 0.0031 

3 3.273 0.0044 

4 1.1936 0.0071 

5 3.559 0.0039 

4.4.1  All Data Tasking 
 

Histograms showing percentage of position errors falling within the bins described in Section 
4.2 for the all data simulation is presented in Figure 51. Another histogram showing the 
percentage of position errors falling within specified multiplicative factors of the estimated 
position standard deviation are found in Figure 52. Additionally, tabulated results showing the 
scalar performance metrics outlined in Equations 198 and 201 are presented in Table 12. 
 

Table 12. Simulation Performance Metrics for All Data High-Error Simulation 

Filter rE  (km) rÂ  (km2) 

EKF 18.442 9.515 x 102 
UKF 15.071 8.465 x 102 

AEGIS 13.850 7.853 x 102 
 
From observing Figures 51 - 52 as well as Table 12, the AEGIS filter once again has the best 

performance in the all data simulation, followed by the UKF and EKF, as was the case in the 
low-error simulation. While scalar performance metrics were higher than in the low-error case, 
many of the trends from the low-error simulation continued into the high-error simulation. One 
trend that was not repeated was the difference in scalar performance metrics between the EKF 
and UKF filters. In the high-error case, the inferior initial state/covariance estimates and updates 
of these estimates (due to the higher sensor noise) have a more adverse effect on the 
implementation of the EKF than the UKF or AEGIS filters. 
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Figure 51. EKF, UKF, and AEGIS histograms of position estimate error distributions for all data 
simulation. Plots include data from all objects at all simulation time steps. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 52. EKF, UKF, and AEGIS histograms of P̂
i,kJ  metric in Equation 202 for all data 

simulation. Plots include data from all objects at all simulation time steps. 
 

This results in the EKF producing a worse average position error as seen in Table 12 (where 
in the low-error simulation the EKF and UKF produced roughly equal values), and a small 
percentage of position errors i,kr 1000   km (opposed to none in the low-error case) or increase 

of position estimates r
i,k i,kˆr 3    as seen in Figures 51 - 52 respectively. 

The AEGIS filter once again performs the best due to the fact that it had the lowest average 
position error, which resulted from the greatest percentage of position estimates within 1 km, as 
well as the lowest average estimated error ellipse area. Figure 52 also shows that while the 
AEGIS filter provides the lowest average estimated error ellipse area, it still occasionally has 
over confident uncertainty estimates (as shown by having a small percentage of position errors 
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r
i,k i,kˆr 3   ). Additionally, just as in the low-error simulation, the UKF and the AEGIS filter 

produced the most position errors within r r
i,k i,k i,kˆ ˆ0.8 r 1.2    , as shown in Figure 52. 

However, in this case the two produced roughly an equal percentage of estimates in this range, 
unlike in the low-error simulation where the AEGIS filter produced more. 

To investigate the propagation of the hyper volume of uncertainty (more accurately, a metric 
which is proportional to that hyper volume), Figure 53 shows the propagation of the average 
error ellipse area in Equation 201 for the object with the worst average position error. Much like 
in the low-error simulation, the AEGIS filter consistently provides the lowest error ellipse area, 
indicating a lower extent of estimate uncertainty, which is validated by the lower average 
position estimate errors obtained by the AEGIS filter, as shown in the Table 12 and Figure 51. 
The major difference between the same results for the low-error case (Figure 16) is that in many 
time periods, the UKF actually has a higher average error ellipse area than the EKF. This is the 
result of the EKF’s tendency to be over confident in its estimates, as described previously. The 

low value for errÂ  for the EKF as compared to the UKF for this simulation coincides with a 

greater tendency to produce inaccurate error estimates (as illustrated by the large percentage of 

EKF position estimates r
i,k i,kˆr 3   ), and therefore points to a fault and not an advantage with 

these lower EKF errÂ  values. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 53. EKF, UKF, and AEGIS plots of 1 2
err i,k i,kÂ     metric for the object with the 

highest average position error in the all data simulation. 
 
To investigate how each individual object performed in the all data simulation, Figure 54 

shows the average position error for each simulated object, while Figure 55 shows how many 
updates each of these objects received. Figure 55 illustrates the diversity in the number of 
updates each object received, which Figure 54 shows is strongly correlated to the average 
position error an object would obtain throughout the simulation. Just as with the low-error 
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simulation, some objects are sparsely available for observation (e.g. objects 1, 8, 76, among 
others), while other objects have several (most notably object 71). For all objects, the AEGIS 
filter had the greatest tendency to provide the best average position errors as opposed to the EKF 
or UKF, which both had a series of objects with the worst errors. In fact, for many of the objects 
which had the worst average errors, the EKF always performed worse than the UKF (e.g. objects 
39, 54, 81, and 94). 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 54. Bar graphs showing the log10 average position error for each object given in Equation 
200, through implementation of an EKF, UKF, and AEGIS filter in conjunction with all data 
tasking strategy. In this case, the filters have equal amounts of updates, reflecting the maximum 
updates possible for all objects. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 55. Bar graphs showing the updates each object received through implementation of an 
EKF, UKF, and AEGIS filter in conjunction with all data tasking strategy. In this case, the filters 
have equal amounts of updates, reflecting the maximum updates possible for all objects. 
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4.4.2  FIG Tasking  
Table 13 shows the scalar performance metrics outlined in Equations 198 and 201 for the 

low-error simulation using FIG-based tasking. In addition, figures showing the distribution of 

position errors and how these errors compared to the estimated r
i,kˆ3  provided by the filter 

covariance estimates are presented in Figures 56 - 57. 

The EKF, UKF, and AEGIS filter all had similar performance using FIG-based tasking in the 
high-error test case as in the low-error, with the AEGIS filter performing the best, and the EKF 
experiencing a disproportionate drop in performance with respect to the other filters. This is 
shown in the very large average error metric in Table 13, along with a drastic increase of position 
estimate errors ( i,kr ) greater than 100 km in Figure 56, as well as percentage of position 

estimate errors greater than r
i,kˆ3 in Figure 57. In the latter case, the percentage of position 

estimate errors greater than r
i,kˆ3 increased drastically in the high-error test case for the EKF, 

representing 12% of all estimates as opposed to 6% for the low-error FIG simulation. In contrast, 
the UKF and AEGIS filters did not experience this increase in poor estimates, indicating that the 
increase in errors led to much more drastic performance discrepancies when tasking was 
implemented than in the low-error simulations. This is also reflected in the relatively close 

proximity of the values for errÂ  between the two filters in comparison to their large deviations 

in rE . This again implies that the EKF has a greater tendency to underestimate the possible 

error in its estimations than the UKF or AEGIS filters. The poor performance shown in the EKF-
FIG combination would lead to either severely inaccurate object uncertainty and/or location 
estimates, or an inability to continue to monitor those objects should these methods be used in a 
real satellite tracking application. 

As for the UKF-FIG combination, the performance was much better, and trends were similar 
to those in the low-error test case. Furthermore, the AEGIS filter also performed similar to the 
low-error test case, reflected by having the lowest scalar performance metrics in Table 13, the 
highest percentage of estimates within the tightest position error bounds of ri,k 1 km and the most 

position errors within r r
i,k i,k i,kˆ ˆ0.8 r 1.2    . 
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Table 13. Simulation Performance Metrics for FIG High-Error Simulation 

Filter 
rE  (km) rÂ  (km2) r Tasking

r All Data

E

E




 

r
Tasking

r
All Data

Â

Â



  

EKF 1.418 x 103 4.959 x 103 76.889 5.211 

UKF 25.248 1.345 x 103 1.675 1.589 

AEGIS 24.316 1.178 x 103 1.756 1.500 

 

 
 
 
 
 
 
 
 
 
 
 
Figure 56. EKF, UKF, and AEGIS histograms of position estimate error distributions for FIG 
simulation. Plots include data from all objects at all simulation time steps. 
 

To investigate why performance discrepancies existed in the implementation of EKF, UKF, 
and AEGIS filters in conjunction with an FIG tasking strategy, Figures 58 - 59 show the amount 
of updates each simulated object received along with their corresponding average position errors 
in the FIG simulation. 

As shown in Figure 59, several objects received a disproportionately large amount of updates 
(e.g. objects 10, 11, 25, and especially 71) with respect to many others which received little to 
none. The result was generally the same as in the low-error test case, in that several objects 
accumulated large estimate errors due to these few updates, while those that had the most 
observations had very good average position estimate errors. In particular, the objects which 
received little to no observations had errors which were much greater when using an EKF as 
opposed to a UKF or AEGIS filter (e.g. objects 12, 24, 31, 32, etc.), which resulted in the vast 
performance discrepancies between the EKF and other two filters as seen in Table 13, as well as 
Figures 56 - 57. Furthermore, Figure 59 shows that for the particular objects that received little 
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updates, the UKF and AEGIS filter consistently had more updates than the EKF (which 
sometimes had zero), with the UKF usually having the most. In all of these cases, the AEGIS 
filter generally provided better or of equal quality estimates than the EKF or UKF, even at times 
when it resulted in less updates for a particular object than the UKF. Similarly, the EKF always 
produced more observations for those objects which had the lowest average position estimate 
errors, followed by the AEGIS filter and finally the UKF with the least updates (objects 10, 11, 
18, 25, 36, etc.). This generally resulted in those objects having lower average position estimate 
errors using an EKF than a UKF, which the AEGIS errors would be lower than both. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 57. EKF, UKF, and AEGIS histograms of P̂
i,kJ  metric in Equation 202 for FIG simulation. 

Plots include data from all objects at all simulation time steps 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 58. Bar graphs showing the log10 average position error for each object given in Equation 
200, through implementation of an EKF, UKF and AEGIS filter in conjunction with a FIG 
tasking strategy. 
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Figure 59. Bar graphs showing the updates each object received through implementation of an 
EKF, UKF, and AEGIS filter in conjunction with a FIG tasking strategy. As with the low-error 
scenario, the FIG tasking results in many updates to a select few objects, while many other 
objects receive little to none. 
 

To investigate why there was such a performance discrepancy between the EKF and other 
filters when implementing FIG, Figures 60 - 65 show when object 59 (the worst performing FIG 
object using either filter) was available for observation, tasked for observation, as well as the 
time histories of its position estimate error using FIG, the position error in the all data case, its 
maximum FIG utility metric (at times it was available for observation), and the average FIG 
metric for objects tasked for observation. Figure 60 shows that despite being available for 
observation for much of the simulation, using the EKF only resulted in 4 observations while the 
UKF resulted in 18 and the AEGIS filter 11. This increase in observations leads to the position 
error for this object to be much better, and much more stable for the UKF and AEGIS filter than 
the EKF where it diverged drastically. 

In the case of the AEGIS filter, it was able to on average maintain a better position estimate 
error than the UKF throughout the whole simulation for object 59 using approximately two thirds 
of the updates. 

When observing Figures 63 - 65, results were almost identical to the low-error test case. The 
EKF failed to produce updates to object 59 because its FIG metric was consistently below the 
average FIG for tasked objects, while the UKF and AEGIS filters produced FIG values more on 
par with the average of tasked objects. Furthermore, the FIG time history for the EKF was more 
homogeneous (less spikes) than for the UKF or AEGIS filter, due to the zero valued velocity 
information in the EKF’s calculation of FIG, as detailed in Equation 203. As with the low-error 
test case, the FIG metric for the EKF is uncorrelated with the filter’s uncertainty (taking the form 
of sigma point distributions in the UKF and AEGIS filters) and therefore remains fairly constant 
throughout the simulation. The only differences between the high and low-error test cases were 
that there was slightly more variation in the FIG metric for the EKF (due to the sensor noise 
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being different for each sensor), and that the spikes for object 59 in Figures 64 - 65 diminished 
earlier in the simulation. The latter is due to less divergence in the estimate errors for object 59 in 
the high-error case as opposed to object 71 in the low-error case, resulting in less possible 
information gain in the high-error case, and therefore less spikes in Figures 64 - 65 as opposed to 
Figures 27 - 28. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 60. Plot of the position error i,kr  and tasking decisions for object 59 using FIG tasking 

strategy in conjunction with an EKF. Thick sections of line reflect times when observations were 
available between object 59 and one or more sensors. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 61. Plot of the position error i,kr  and tasking decisions for object 59 using FIG tasking 

strategy in conjunction with a UKF. Thick sections of line reflect times when observations were 
available between object 59 and one or more sensors. 
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Figure 62. Plot of the position error i,kr  and tasking decisions for object 59 using FIG tasking 

strategy in conjunction with an AEGIS filter. Thick sections of line reflect times when 
observations were available between object 59 and one or more sensors. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 63. Plot of the FIG utility metric and tasking decisions for object 59 using FIG tasking 
strategy in conjunction with an EKF. Thick sections of line reflect times when observations were 
available between that object and one or more sensors. 
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Figure 64. Plot of the FIG utility metric and tasking decisions for object 59 using FIG tasking 
strategy in conjunction with a UKF. Thick sections of line reflect times when observations were 
available between that object and one or more sensors. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 65. Plot of the FIG utility metric and tasking decisions for object 59 using FIG tasking 
strategy in conjunction with an AEGIS filter. Thick sections of line reflect times when 
observations were available between that object and one or more sensors. 

4.4.3  SIG Tasking 
 

Table 14 shows the scalar performance metrics outlined in Equations 198 and 201 for the 
high-error simulation using SIG tasking. In addition, figures showing the distribution of position 

errors and how these errors compared to the estimated r
i,kˆ3  provided by the filter covariance 

estimates are presented in Figures 66 - 67. Results show that each filter obtains better 
performance than in the implementation of the FIG tasking strategy in the same manner as the 
low-error test case. Also like in the low-error simulations, the SIG tasking strategy does not have 
the disproportionately bad performance for the EKF, though the EKF did not fare as well 
compared to the UKF and AEGIS filter as it did in the low-error simulation. This is shown in the 
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relatively high average position error metric with respect to the UKF and AEGIS filter in Table 
13, along with the small percentage of position estimate errors i,kr 1000   km in Figure 66, and 

percentage of position estimate errors greater than r
i,kˆ3  in Figure 67. In the latter case, much 

like in the FIG high-error simulation, the amount of position estimates r
i,k i,kˆr 3    increased 

from the low-error SIG simulation for the EKF, while it remained roughly the same for the UKF 
and AEGIS filter. Once again, this points to the EKF being more susceptible to producing poor 
covariance (uncertainty) estimates as the amount of error increases in the simulation. This is 

compounded by the fact that the EKF also produced the most position errors r
i,k i,kˆr 0.2   and 

the least within r r
i,k i,k i,kˆ ˆ0.8 r 1.2    , meaning it produced the most overconfident (uncertainty 

estimate much smaller than actual error) and under confident (uncertainty estimate much larger 
than actual error) uncertainty estimates, while also producing the least accurate uncertainty 
estimates (uncertainty estimate is a fair approximation of actual error). 

For the UKF-SIG combination, the UKF produced very little position errors outside of the 
r
i,kˆ3  bounds as shown in Figure 67, and managed to obtain better position errors as shown by 

Table 14 and Figure 29 than in the FIG simulation. These results deviated vary little from the 
trends seen in the low-error simulation, except that the overall average errors and distribution of 
errors were of a higher magnitude. 

The AEGIS filter once again produced the best performance using the SIG tasking as it did in 
the low-error simulations. Furthermore, Figure 56 shows that the AEGIS filter provided a 
disproportionate amount of estimates within the tightest position error bounds of i,kr 1  , as it 

did in the low-error SIG simulations. When observing Figure 57, while the AEGIS filter once 

again produced more position errors outside of the r
i,kˆ3  bounds than the UKF, these estimates 

were few (less than 1%). What is more important is that the AEGIS filter produced the most 

position errors within r r
i,k i,k i,kˆ ˆ0.8 r 1.2    . Overall, like the UKF, there was little deviation in 

the trends observed for the AEGIS filter between the low and high-error simulations. 
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Table 14. Simulation Performance Metrics for SIG High-Error Simulation 

Filter 
rE  (km) rÂ  (km2) r Tasking

r All Data

E

E




 

r
Tasking

r
All Data

Â

Â



  

EKF 37.334 1.144 x 103 2.024 1.202 

UKF 18.642 1.060 x 103 1.237 1.589 

AEGIS 16.370 9.485 x 102 1.182 1.208 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 66. EKF, UKF, and AEGIS histograms of position estimate error distributions for SIG 
simulation. Plots include data from all objects at all simulation time steps. 
 

To investigate why performance discrepancies existed in the implementation of EKF, UKF, 
and AEGIS filters in conjunction with an SIG tasking strategy, Figures 68 - 69 show the amount 
of updates each simulated object received along with their corresponding average position errors 
in the SIG simulation. 
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Figure 67. EKF, UKF, and AEGIS histograms of P̂

i,kJ metric in Equation 202 for SIG simulation. 

Plots include data from all objects at all simulation time steps. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 68. Bar graphs showing the log10 average position error for each object given in Equation 
200, through implementation of an EKF, UKF and AEGIS filter in conjunction with an SIG 
tasking strategy. 
 

As shown in Figure 69, when using SIG tasking there was a more even distribution of 
observations as opposed to the FIG simulation, resulting in less objects accumulating large 
estimate errors than was experienced using FIG tasking. Once again, this followed the same 
trend as in the low-error simulation, except that there were no objects for which the AEGIS filter 
produced a much larger magnitude of observations than the EKF or UKF. However, the AEGIS 
filter still produced much different tasking schedules for many objects when compared to the 
number of updates those object received using the EKF or UKF. In some cases, the AEGIS filter 
resulted in much more updates than the EKF or UKF (e.g. objects 8, 16, 17, etc.) while for others 
it produced fewer (e.g. objects 4, 10, 11, 71, etc). As with the low-error simulation, these 
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different tasking schedules typically resulted in lower average position errors than the EKF or 
UKF, pointing to a greater degree of tasking efficiency when using the AEGIS filter. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 69. Bar graphs showing the updates each object received through implementation of an 
EKF, UKF, and AEGIS filter in conjunction with a SIG tasking strategy. 
 

While the UKF provided a slight overall performance advantage to the EKF, Figure 68 shows 
that the EKF produced lower average position estimate errors for several objects. Much like in 
the low-error simulation, the difference was that for objects which accumulated the largest 
errors, the EKF would have an equal or greater error than the UKF or AEGIS filter (e.g. objects 
8, 58, 81, and most notably object 39), which would have resulted in a higher overall average 
estimated position error in Table 14. Furthermore, Figure 68 shows that unlike in the low-error 
test case, the UKF did not consistently produce lower average estimated position errors for the 
best performing objects than the EKF. 

Also, in a similar manner to the low-error simulation, the AEGIS filter would generally 
provide equal or more updates to objects which were available for few observations (e.g. objects 
1, 8, 93, etc), and less observations for objects which were often available (most notably object 
71). This again points to the more efficient sensor schedules using the AEGIS filter, in that it can 
use less observations to create equal or better average position errors for objects frequently 
available for observation, allowing for more observations to objects sparsely available to any 
sensors. 

To investigate why sensor tasking differed between the EKF, UKF, and AEGIS filter when 
implementing SIG, Figures 70 - 75 show when object 39 (the worst performing SIG object using 
either filter) was available for observation, tasked for observation, as well as the time histories of 
its position estimate error using SIG, the position error in the all data case, its maximum SIG 
utility metric (at times it was available for observation), and the average SIG metric for objects 
tasked for observation. Figures 73 - 75 show that object 39, while having many available 
windows for observation, experiences three long periods when no observations were possible 
(roughly 5,000 - 50,000 sec, 51,000 - 99,000 sec, and 100,000 - 135,000 sec). The major 



122  
Approved for public release; distribution is unlimited. 

 

differences between the filters in this case was that the UKF and AEGIS filter provided better 
updates (i.e. decreased position error more) than the EKF, and that the AEGIS filter provided 
many more observations than the EKF or UKF (17 for the EKF and UKF, 33 for the AEGIS 
filter). With respect to providing better updates, Figures 74 - 75 show that the UKF and AEGIS 
filter can recover easier from a position error which has diverged to a large extent, going from a 
position error of roughly 1000 km to one which is just below 10 km. While these errors are too 
high for any practical application of satellite tracking, they illustrate in general terms the benefit 
a better filter can provide, in that it’s easier to recover from a diverging estimation error using 
these filters as opposed to an EKF (which comparatively went from about 1000 km to about 100 
km). 

When observing Figures 73 - 75, the SIG metric for object 39 varies little between the EKF 
and UKF filters, while there is a noticeable difference using the AEGIS filter, as was the case in 
the low-error test case. Once again, these differences are that the mean SIG for tasked objects 
decreases to a larger extent throughout the simulation for the AEGIS filter, and the SIG metric 
for object 39 remains closer to the mean for the AEGIS filter than the EKF or UKF, resulting in 
more observations using the AEGIS filter. As was the case for the low-error simulation, this can 
be explained by observing the time history of the average estimated error ellipse metric in Figure 
76. As a reiteration from the low-error simulation, the AEGIS filter typically gets much better 

covariance updates resulting in a lower value of errÂ  when updates occur, and therefore less 

divergence in errÂ  in subsequent time steps when updates do not occur. Since the SIG metric 

relies on the ratio of determinants of covariance estimates between the forecast and update steps, 
if this change is greater for the AEGIS filter than other filters, it will result in a different 
evolution in the SIG metric as well. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 70. Plot of the position error i,kr  and tasking decisions for object 39 using SIG tasking 

strategy in conjunction with an EKF. Thick sections of line reflect times when observations were 
available between object 39 and one or more sensors. 
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Figure 71. Plot of the position error i,kr  and tasking decisions for object 39 using SIG tasking 

strategy in conjunction with a UKF. Thick sections of line reflect times when observations were 
available between object 39 and one or more sensors. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 72. Plot of the position error i,kr  and tasking decisions for object 39 using SIG tasking 

strategy in conjunction with an AEGIS filter. Thick sections of line reflect times when 
observations were available between object 39 and one or more sensors. 
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Figure 73. Plot of the SIG utility metric I and tasking decisions for object 39 using SIG tasking 
strategy in conjunction with an EKF. Thick sections of line reflect times when observations were 
available between that object and one or more sensors. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 74. Plot of the SIG utility metric I and tasking decisions for object 39 using SIG tasking 
strategy in conjunction with a UKF. Thick sections of line reflect times when observations were 
available between that object and one or more sensors. 
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Figure 75. Plot of the SIG utility metric I and tasking decisions for object 39 using SIG tasking 
strategy in conjunction with an AEGIS filter. Thick sections of line reflect times when 
observations were available between that object and one or more sensors. 
 

Also of interest is the evolution of the value for errÂ  for the UKF as compared to the EKF. In 

much the same way as Figure 53, the EKF often produces a lower value of errÂ  for much more 

of the simulation than the UKF, a result which goes counter to its higher position errors as seen 
in Figure 70. This once again illustrated why the EKF can be over confident in its uncertainty 

estimates, resulting in a higher percentage of position errors r
i,k i,kˆr 3    and overall worse 

performance than the UKF. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 76. EKF, UKF, and AEGIS plots of 1 2
err i,k i,kÂ     metric for object 39 in the SIG 

simulation. 
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4.4.4  LLE Tasking 
 

Table 15 shows the scalar performance metrics outlined in Equations 198 and 201 for the 
high-error simulation using LLE tasking. In addition, figures showing the distribution of position 

errors and how these errors compared to the estimated r
i,kˆ3  provided by the filter covariance 

estimates are presented in Figures 77 - 78. 
 

Table 15. Simulation Performance Metrics for LLE High-Error Simulation 

 

Filter 
rE  (km) rÂ  (km2) r Tasking

r All Data

E

E




 

r
Tasking

r
All Data

Â

Â



  

EKF 21.451 1.131 x 103 1.163 1.188 

UKF 17.249 1.042 x 103 1.145 1.231 

AEGIS 16.193 9.463 x 102 1.169 1.205 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 77. EKF, UKF, and AEGIS histograms of position estimate error distributions for LLE 
simulation. Plots include data from all objects at all simulation time steps. 
 
When observing the performance utilizing LLE tasking, it provides better estimates for all filters 
than the FIG strategy, but in contrast to the low-error simulation also results in better 
performance than the SIG method. This benefit is most prevalent in the EKF, which showed 
significant improvement in overall performance when compared to the SIG simulation, while the 
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AEGIS filter showed only a slight improvement. From observing Figures 77 - 78, though the 
LLE tasking strategy results in less objects within position estimate errors of 1 km than the SIG 
method, it also results in less than 50 km, which accounted for most of the improved 
performance when compared to the SIG simulation. Additionally, while the EKF had a large 
improvement in its average position estimate error, it also produced roughly the same percentage 

of position estimate errors r
i,k i,kˆr 3    as the SIG simulation. Additionally, while the AEGIS 

filter did not show a drastic improvement in performance over the SIG method, there was an 

increase in position estimate errors in the range r r
i,k i,k i,kˆ ˆ0.8 r 1.2     over the SIG simulation, 

indicating that the AEGIS filter provided slightly more accurate uncertainty estimates using the 
LLE tasking strategy. 
 
 
 
 
 
 
 
 
 
 
 

Figure 78. EKF, UKF, and AEGIS histograms of P̂
i,kJ  metric in Equation 202 for LLE 

simulation. Plots include data from all objects at all simulation time steps. 
 

When compared to results in the low-error simulation, the AEGIS filter produced less 

position estimates outside the r
i,k i,kˆr 3    bounds, while all filters produced more accurate 

estimates in the range of r r
i,k i,k i,kˆ ˆ0.8 r 1.2    . This is interesting in that all of the filters 

produced more accurate uncertainty estimates in the high-error estimation than in the low-error 
estimation, a fact that aided in the superior performance of the LLE method over the SIG method 
in the high-error simulation. Furthermore, the three filters had a greater discrepancy between 
performance metrics in the high-error case, with the difference between the EKF and UKF being 
higher than that of the UKF and AEGIS filter. Again, as with the FIG and SIG simulations, the 
high-error simulation shows that the EKF is more susceptible to poor performance due to a 
higher simulation error when compared to the UKF or AEGIS  filter. 

To investigate why performance discrepancies existed in the implementation of EKF, UKF, 
and AEGIS filters in conjunction with an LLE tasking strategy, Figures 79 - 80 show the amount 
of updates each simulated object received along with their corresponding average position errors 
in the LLE simulation. 



128  
Approved for public release; distribution is unlimited. 

 

 
 
 
 
 
 
 
 
 
 
 
Figure 79. Bar graphs showing the log10 average position error for each object given in Equation 
200, through implementation of an EKF, UKF and AEGIS filter in conjunction with an LLE 
tasking strategy. 
 
Once again, as was the case with the low-error simulation, Figure 80, shows a more even 
distribution of observations among all the simulated objects than the FIG method, and is more 
similar to the SIG method. There does exist a slight difference in the LLE and SIG methods, in 
that the LLE method resulted in slightly better performance to several of the worst performing 
objects (e.g. objects 1, 16, 17, 91, 92, etc. and especially object 39), while resulting in slightly 
worse performance for objects which performed relatively well (e.g. objects 10, 11, 18, 25, etc.). 
Also in a similar manner to the SIG method and LLE low-error simulation, while several objects 
have a minor difference in the amount of updates received using an EKF or UKF, the AEGIS 
filter provides much different tasking strategies for many objects. For the objects with the worst 
position estimate error (e.g. objects 8, 35, 39, 44, etc.) the EKF either had an equal or slightly 
worse (the only case where the position estimate error was drastically worse was for object 39) 
average position estimate error than the UKF, and would receive equal or slightly less updates. 
This indicates that while the tasking decisions between the filters are not as obvious as with 
using FIG-based tasking, slight discrepancies still exist which show the UKF typically provides 
more observations to the worse performing objects than the EKF, resulting in more efficient 
tasking decisions. For many of these objects, the AEGIS filter would provide more updates than 
either the EKF or UKF, often resulting in a better average position estimate error. In much the 
same way as the SIG method, the LLE tasking using the AEGIS filter would also typically result 
in less observations for objects with the best average position estimate errors than the EKF or 
UKF, while generally resulting in comparable to improved performance (e.g. objects 10, 11, 13, 
18, etc.). 
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Figure 80. Bar graphs showing the updates each object received through implementation of an 
EKF, UKF, and AEGIS filter in conjunction with an LLE tasking strategy. 
 

To examine the LLE metric, and how it affects tasking decisions between the EKF, UKF, and 
AEGIS filter, Figures 81 - 86 show when object 39 (the worst performing LLE object using 
either filter) was available for observation, tasked for observation, as well as the time histories of 
its position estimate error using LLE, the position error in the all data case, its maximum LLE 
utility metric (at times it was available for observation), and the average LLE metric for objects 
tasked for observation. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 81. Plot of the position error i,kr  and tasking decisions for object 39 using LLE tasking 

strategy in conjunction with an EKF. Thick sections of line are times at which observations were 
available between object 39 and one or more sensors. 
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Figure 82. Plot of the position error i,kr  and tasking decisions for object 39 using LLE tasking 

strategy in conjunction with a UKF. Thick sections of line are times at which observations were 
available between object 39 and one or more sensors. 
 
Figures 81 - 82 show that the worst object in the LLE simulation was one that experienced long 
time spans when observations were not possible, the largest of these periods between times of 
approximately 5,000 - 50,000 seconds, 55,000 - 95,000 seconds, and 105,000 - 135,000 seconds. 
In each case, the object was immediately observed at the first instance it was available, which 
was one trait the LLE metric was hypothesized to provide, as was the case in the low-error 
simulation. During these time spans, the position estimate error would begin to diverge, as was 
expected. However, while both diverged, they did so at different rates, particularly in the time 
span of 55,000 - 95,000 seconds. This was largely due to the better updates the UKF and AEGIS 
filter received as opposed to the EKF at approximately 50,000 seconds, as illustrated by the 
larger drop in position estimate errors. After these updates, the error from the UKF and AEGIS 
filter did not diverge at the same rate as the EKF. Due to this, once observations were again 
possible around 95,000 seconds, the position error using the UKF and AEGIS filter were 
considerably less than the EKF. Since object 39 had equal updates at equal times using both the 
EKF and UKF over these time spans, the difference in performance can be directly attributed to 
the filter selection, and not a filter/tasking coupling effect. However, at the time shortly after 
95,000 seconds observations were once again available for a short period of time, for which the 
EKF received 2 and the UKF received 3. This slight difference of one observation follows the 
trend that for the objects with the worst estimation errors, the UKF resulted in slightly more 
observations than the EKF, as was observed in Figure 80. A similar additional update occurred 
near the end of the simulation at approximately 165,000 seconds, where the UKF received 4 and 
the EKF 3. The result, both from the two additional updates gained from the UKF (there were 31 
total for the EKF, 33 for the UKF) as well as the UKF’s more effective updates was that the UKF 
consistently had a lower position estimate error than the EKF, and ended on a final value 
approximately one order of magnitude lower. 
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Figure 83. Plot of the position error i,kr  and tasking decisions for object 39 using LLE tasking 

strategy in conjunction with an AEGIS filter. Thick sections of line are times at which 
observations were available between object 39 and one or more sensors. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 84. Plot of the LLE utility metric 1̂  and tasking decisions for object 39 using LLE 
tasking strategy in conjunction with an EKF. Thick sections of line are times at which 
observations were available between that object and one or more sensors. 
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Figure 85. Plot of the LLE utility metric 1̂  and tasking decisions for object 39 using LLE 
tasking strategy in conjunction with a UKF. Thick sections of line are times at which 
observations were available between that object and one or more sensors. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 86. Plot of the LLE utility metric 1̂  and tasking decisions for object 39 using LLE 
tasking strategy in conjunction with an AEGIS filter. Thick sections of line are times at which 
observations were available between that object and one or more sensors. 
 

Figure 83 differs from Figures 81 - 82 primarily in how many more updates object 39 
received using the AEGIS filter as opposed to the EKF or UKF (47 observations compared to 31 
for the EKF and 33 for the UKF). Like in the low-error test case, this was much higher than what 
object 39 received for either the EKF or UKF, and follows the same trait that the AEGIS filter 
provides a disproportionate amount of updates to the worst performing objects, resulting in more 
efficient tasking compared to the EKF or UKF. 

Figures 84 - 86 show that the LLE metric has a strong correlation to the actual estimate error 
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as the simulation progresses (i.e. rises and falls with estimate error) as it did in the low-error 
simulation. In addition, as was the case for the SIG simulation and LLE low-error simulation, the 
LLE metric for the AEGIS filter behaves slightly different than the EKF or UKF, in that its 
average value of tasked objects decreases more over time than for the EKF or UKF. As 
explained in the SIG high-error simulation, this results from the advantages in obtaining the 
covariance estimate using the AEGIS filter as opposed to the EKF or UKF. The reason for this is 
the same as it was in the low-error LLE simulation, in that the covariance estimates are 
decreasing more using the AEGIS filter, where for the EKF and UKF they are more stabilized. 
This results in the worst objects being tasked for more observations using the AEGIS filter 
because the average LLE value among all objects decreases to a greater extent. As with the SIG 
simulation, these observations point to the AEGIS filter providing not only an estimation 
advantage, but also a tasking advantage using the LLE strategy as opposed to the EKF or UKF. 
When compared to the SIG high-error simulation, the higher initial errors and sensor noise result 
in more divergence in estimation errors for poorly performing objects. Since the LLE metric is 
supposed to task objects for observation based upon the divergence of these estimation errors, it 
is better at avoiding this divergence than the SIG method, resulting in the improved performance 
with respect to the SIG method in the high-error simulations. 
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5.0 CONCLUSIONS 
 
In these studies, the relationship between nonlinear state/uncertainty estimation and dynamic 
sensor tasking was investigated as applied to a simplified two-dimensional satellite tracking 
problem. Estimator and tasking combinations were tested against two of these tracking scenarios, 
one in which initial estimation errors and sensor noise were low (reflecting ideal tracking 
conditions) while the other had higher initial errors and sensor noise (highlighting how these 
combinations fare in non-ideal conditions). The estimators used were an extended Kalman filter 
(EKF), an unscented Kalman filter (UKF), and an adaptive entropy-based Gaussian information 
synthesis (AEGIS) filter, while the tasking methods were based on information-theoretic 
approaches using Fisher information gain (FIG), Shannon information gain (SIG), and a new 
stability approach using largest Lyapunov exponent estimation (LLE). Simulation results showed 
that not only was the discrepancy between the three estimators drastic at times, but that the 
tasking methods based on LLE and SIG in combination with an AEGIS filter provided the most 
accurate estimates, while FIG based tasking with an EKF provided the worst. 

When comparing the three methods of tasking, in both the high-error and low-error 
simulations the implementation of FIG tasking consistently resulted in the worst performance for 
all filters with respect to either the SIG or LLE tasking methods. This is primarily due to the 
FIG-based tasking failing to distribute sensor observations among all the satellites, causing a 
more rapid divergence of some of the satellite’s estimation errors. This poor distribution is both a 
result of FIG being myopic in its implementation, as well as it being a measure of absolute (and 
therefore unscaled) information gain, leading to objects being observed based on the information 
increase between an object-sensor pair at a single simulation time step. Consequently, an object-
sensor pair that consistently has a low value of FIG with respect to other objects will rarely be 
observed, while ones that have a high FIG will be observed very frequently. This differed from 
the implementation of SIG tasking, which while still myopic, was a relative measure of 
information, meaning that even though an observation of a particular object may reflect a low 
total gain in information with respect to others, if the gain in information is a substantial 
improvement to its current information state the object will have a high priority for observation. 
This resulted in a more even distribution of observations for SIG tasking, which was the best 
performing tasking method for all filters in the low-error simulation. 

However, in the high-error simulation for all three filters, the LLE-based tasking provided 
more accurate estimates of both the satellite state and uncertainty. The LLE metric is based on 
assessing the stability of the filter-specific error dynamics over the total simulation time, such 
that objects that have diverging estimates of uncertainty gain higher priorities for observation. 
While this performed better than the SIG tasking in the high-error simulation, it did not do so in 
the low-error simulation. This was because in the low-error simulation, divergence of estimation 
error was not as much of a concern than in the high-error simulation, meaning that in the low-
error simulation a myopic approach had little consequences, and therefore the SIG approach 
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resulted in the best performance. In contrast, not observing an object with tendencies towards 
diverging estimation errors in the high-error simulation could have much greater consequences, 
and therefore the LLE method tasked to avoid these divergences, and resulted in better 
performance for several objects which had the greatest divergence in estimation error. However, 
while the LLE method was beneficial for those few objects, the myopic SIG method provided 
better performance for objects with lower estimation errors. This points to the LLE tasking 
method being advantageous in tracking situations when estimation errors are expected to 
diverge, while an SIG approach would be better when estimation errors are expected to remain 
more stable, or when objects are expected to maintain a low degree of uncertainty. 

When comparing the three estimators used, the AEGIS filter consistently had the best 
performance for any tasking strategy, followed by the UKF and finally the EKF with the worst. 
One of the clearest examples of this filter discrepancy (and therefore an example of a filter-
tasking coupling effect) was with the FIG tasking, and results from how the FIG is calculated 
based on the filter implemented. For an EKF, it will be based solely on sensor noise and partials 
of the nonlinear measurement function, and for a UKF or AEGIS filter it will be based on the 
sensor noise and distribution of sigma points. This resulted in the extremely poor performance 
seen with the FIG-EKF combination. While performance discrepancies were much less extreme 
for the other filter/tasking combinations, discrepancies still existed, and were generally more 
dramatic for the high-error simulations than the low-error simulations. In particular, much of 
these discrepancies were the result of the difference in covariance propagation and updating 
between the three filters. In general, the EKF received the worst updates (i.e. obtained the 
smallest reduction in uncertainty during an update) while the AEGIS received the best, a fact 
which contributed mightily to the discrepancies in sensor tasking between the three filters. In 
these discrepancies, the EKF generally resulted in the most inefficient tasking strategies, 
followed by the UKF and AEGIS filters. These inefficient tasking decisions were highlighted in 
the SIG and LLE tasking strategies, where the EKF would produce slightly less updates to the 
worst performing objects than the UKF or AEGIS filter. In these cases, the UKF produced 
slightly more updates while the AEGIS filter produced at times over twice as much. This was 
due to the AEGIS filter providing superior updates during observation, meaning it could use less 
updates to obtain a satisfactory degree of uncertainty for many objects, leaving a surplus of 
updates to be used on the worst performing objects, and therefore resulting in the most efficient 
tasking strategies. 

While these studies illustrated that a coupling effect is present between estimator type and 
tasking strategies (should those strategies be covariance-based), this work can be furthered by 
incorporating different nonlinear filters, and by examining the coupling between estimation and 
data association. In the former, particle filters could be implemented. While computationally 
expensive, these filters can generate non-Gaussian mean and covariance estimates which 
describe the location and uncertainty of an object using no approximations. The benefit of this 
could be that a particle filter can provide more accurate estimates of tasking metrics, possibly 
providing better performance as opposed to filters which are constrained to have Gaussian PDFs. 
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However, a setback to particle filters is that while they can describe a non-Gaussian mean and 
covariance, they give no indication of the PDF those estimates describe, unlike the AEGIS filter 
which does both. 

In the latter case, including data association would help investigate a very important 
component in satellite tracking problems which was purposefully omitted from these studies. 
Since this work was concerned with the coupling between estimation and covariance-based 
sensor tasking, incorporating the process of data association would have introduced an 
unnecessary variable to this work. However, since many data association techniques use 
uncertainty estimates to validate whether observations are being taken on one object as opposed 
to another (in close proximity), the work done in these studies could translate into examining 
coupling between estimation, sensor tasking, and data association. The objective of such research 
would be to show how the process of satellite tracking can be improved by the application of 
better filters, not only in the estimation component, but in other factions of the problem which 
use estimates in their implementation. This would show the effects of synergy between different 
subsets of satellite tracking problems such as space situational awareness, and could be a benefit 
in the advancement of this very important problem comprising elements of spacecraft mission 
modeling, conjunction analysis, space object characterization, validation, orbit determination, 
and sensor network management. 
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APPENDIX A - The Determinant of the FIG Matrix for an EKF 
 
Consider a simple EKF filtering problem containing a two-state equation of motion 

  T1 2x x , x


       (A.1) 

with two measurement functions  

      T T

1 2 1 2y h x ,h x ,    
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     (A.2) 

and measurement noise covariance 
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       (A.3) 

From the application of Equation 133, the FIG matrix is 
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    (A.4) 

which if simplified yields 
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Taking the determinant of Equation (A.5) results in 
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  (A.6) 

Changing this simple example from an n state equation of motion and m observations yields the 
same results, showing that for an EKF, the determinant of the FIG for these studies is always 
zero. 

  



143  
Approved for public release; distribution is unlimited. 

 

APPENDIX B - Estimation Algorithms 
 

B.1  The Extended Kalman Filter [1] 
 

Step 1: Initialization (time step k = 0) 

State estimate: *
i,0X̂ , Covariance estimate: *

i,0P̂  

Step 2: Forecast  k k 1t t , t   

a) Propagate state estimate from time step k to k + 1 

 f *
i,k 1 i,k

ˆ ˆX X  F        (B-1) 

b) Propagate state transition matrix from time step k to k + 1  

Integrate 
k k k ki,t |t i,t |t i,t |t n n

i,t

f
, I

x 

       
      (B-2) 

c) Calculate covariance estimate  

Tf *
i,k 1 i,k|k 1 i,k i,k|k 1 i,k

ˆ ˆP P Q             (B-3) 

Step 3: Update (Given set of M  sensors to task object i at time k + 1, i,k 1S 
 ) 

a) Calculate measurement partial and estimated measurement 
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b) Calculate sensor noise covariance, cross covariance, innovation covariance, 
and Kalman gain matrix  
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c) Update state and covariance estimates 

* f
i,k 1 i,k 1 i,k 1 i,k 1 i,k 1

* f yy T
i,k 1 i,k 1 i,k 1 i,k 1 i,k 1 i,k 1

ˆ ˆ ˆX X K y y

ˆ ˆP P K P R K

    

     
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


    (B-7) 

d) Update time step k = k + 1 and repeat steps 2-3 
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B.2  The Unscented Kalman Filter [1] 
 

Step 1: Initialization (time step k = 0) 

State estimate: *
i,0X̂ , Covariance estimate: *

i,0P̂  

Sigma point weights: 
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Step 2: Forecast  k k 1t t , t    

a) Draw and propagate sigma points from time step k to k + 1  
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* CH CH
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b) Compute state and covariance estimates 

2nf f ,
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  (B-11) 

Step 3: Update (Given set of M  sensors to task object I at time k + 1, i,k 1S
 ) 

a) Calculate measurement sigma points and estimated measurement 
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b) Calculate sensor noise covariance, cross covariance, innovation covariance, 
and Kalman gain 
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   

 
 
 
 
 
 

  
 
 
 
 
 
 

       

    




 

 





 

 

 

T

,k 1

1xy yy
i,k 1 i,k 1 i,k 1 i,k 1K P P R





   

  

 

 (B-13) 

c) Update state and covariance estimates 

* f
i,k 1 i,k 1 i,k 1 i,k 1 i,k 1

* f yy T
i,k 1 i,k 1 i,k 1 i,k 1 i,k 1 i,k 1

ˆ ˆ ˆX X K y y

ˆ ˆP P K P R K

    

     

    
    




    (B-14) 

d) Update time step k = k + 1 and repeat steps 2-3 
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B.3  The Adaptive Entropy-Based Gaussian Information Synthesis Filter [2] 
 

Step 1: Initialization (time step k = 0) 

GMM PDF:    Jlg * * l g *,l *,l
i,0 i,0 i,k i,0 i,0 i,0 i,kl 1

ˆ ˆ ˆ ˆp x ;X , P p x ;X , P


  
  (B-15) 

Sigma point weights 

 x p

1
W W , 1,...,2n

2n
          (B-16) 

Step 2: Forecast  k k 1t t , t    

a) Draw and propagate sigma points from time step k to k + 1 l 

   

 

l *,l CH,l CH,l
i,k i,k i,k i,k1 2n

f l
i,k 1 i,k

ˆ ˆ ˆX 1 n P P

 





    

 F
     (B-17) 

b) If nonlinearity detected at time t, split using data in Table 1  
c) Compute state and covariance estimates l  

2nf ,l f ,l,
i,k 1 x i,k 10

T2nf ,l f ,l, f ,l f ,l, f ,l
i,k 1 p i,k 1 i,k 1 i,k 1 i,k 1 i,k0

X̂ W

ˆ ˆ ˆP W X X Q

 


  




 

 

    



         




  (B-18) 

Step 3: Update 

a) Calculate measurement sigma points and estimated measurement l 

 

 
 

 

1

M

1

M

f ,l,
i,k 1 s ,k 1

f ,l,
i,k 1 s ,k 1l,

i,k 1
f ,l,
i,k 1 s ,k 1

f ,l,
i,k 1 s ,k 1

2n 1l l,
i,k 1 x i,k 10

h , s

h , s
Y , 0,...,2n

h , s

h , s

ŷ W Y























 















 

 



 

 



 

 
 
 
 
 
  
 
 
 
 
 
 

 











    (B-19) 
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b) Calculate sensor noise covariance, cross covariance, innovation covariance, 
and Kalman gain l 

 

 
 

 

1

M

1

M

2

s ,k 1

2

s ,k 1

i,k 1 2

s ,k 1

2

s ,k 1

T2nxy,l f ,l, f ,l l, l
i,k 1 p i,k 1 i,k 1 i,k 1 i,k 11

2nyy,l l, l
i,k 1 p i,k 1 i,k 10

0 0

0

R

0

0 0

ˆ ˆP W X Y y

ˆP W Y y



















  


 


























    

  

 
 
 
 
 
 

  
 
 
 
 
 
 

       

 




 

 





 

 

 

Tl, l
i,k 1 i,k 1

1l xy,l yy,l
i,k 1 i,k 1 i,k 1 i,k 1

ˆY y

K P P R





 



   

     

 

 (B-20) 

c) Update state and covariance estimates and GMM weights l 

 
   

*,l f ,l l l
i,k 1 i,k 1 i,k 1 i,k 1 i,k 1

T*,l f ,l l yy,l l
i,k 1 i,k 1 i,k 1 i,k 1 i,k 1 i,k 1

Ll l g l yy,l l g l yy,l
i,k 1 i,k i,k 1 i,k 1 i,k 1 i,k i,k 1 i,k 1 i,k 1l 1

ˆ ˆ ˆX X K y y

ˆ ˆP P K P R K

ˆ ˆˆ ˆp y ;y , P / p y ;y , P



  

    

     

  
      

    

    

 



 

 (B-21) 

d) Update time step k = k + 1 and repeat steps 2-3 
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LIST OF SYMBOLS, ABBREVIATIONS AND ACRONYMS 
System Dynamics and Parameters 

t Time 
tf Total simulation time 
Δt Simulation time step duration 
Ns Total space objects in simulation 
O Set of object indices 
Ms Total sensors in simulation 
S Set of sensor indices 
x


 Object state vector 
w


 Process noise vector 

s


 Sensor state vector 

n Size of object/sensor state vectors 

 State transition matrix 

Γ Sensor field of regard 
y


 Sensor measurement vector 

ρ Sensor range measurement 
Δ Maximum sensor range 
ψ Sensor angle measurement 
Ψ Maximum sensor half-angle 
  Sensor noise vector 

  
Estimation 

X


 Estimated object state vector 

P̂  Estimated object covariance matrix 

̂  Estimated standard deviation 

Q Process noise covariance matrix 
ŷ  Estimated measurement 

Π Measurement function Jacobian 
Pxy Cross covariance matrix 
Pyy Innovation covariance matrix 
R Sensor noise covariance matrix  
K Kalman Gain matrix 
χ Sigma points 

xW  Sigma point weights for state estimate 

pW  Sigma point weights for covariance estimate 

L Total components in Gaussian mixture model 
ν Gaussian mixture model component weight 
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H  Shannon entropy 
  

Sensor Tasking 
  Visibility matrix  

  Decision matrix  

  Fisher information matrix 
Ω Fisher information gain matrix 
ϕ Utility metric for Fisher information gain 
I Shannon information 
ΔI Utility metric for Shannon information gain 

1̂  Utility metric for largest Lyapunov exponent estimation 

  
Simulation Performance and Parameters 

Δr Difference in position between estimation and true value 
rE  Average position error 

errÂ  Average estimated error ellipse area 

P̂J  Multiplicative factor between true position error and estimated position 
standard deviation 

  
Subscripts 

k Simulation time step 
i Object index 
j Sensor index 
  

Superscripts 
a Indicates set of objects/sensors available for observation 
τ Indicates set of objects/sensors tasked for observation  
f Forecast estimate 
* Optimal estimate 
γ Sigma point index 
l Gaussian mixture model component 
  

Functions and Operators 
f Object dynamics 
F  Propagation of object dynamics 
g0 Orbiting sensor dynamics 
gg Ground-based sensor dynamics 
h Sensor measurement function 
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G Propagation of sensor dynamics 
p Probability density function 
pg Gaussian probability density function 

pgmm Gaussian mixture model probability density function 
E Expected value  
  Differential  
  

Abbreviations 
  

AEGIS Adaptive Entropy-based Gaussian-mixture Information Systhesis 
EKF Extended Kalman Filter 
FIG Fisher Information Gain 
GBR Ground Based Radar 
GEO Geosynchronous Earth Orbit 
GMM Gaussian Mixture Model 
LEO Low Earth Orbit 
LLE Largest Lyapunove Exponent 
MEO Medium Earth Orbit 
PDF Probability Distribution Function 
SIG Shannon Information Gain 
SSA Space Surveillance Awareness 
SSN Space Surveillance Network 
UKF Unscented Kalman Filter 
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